old recursive polynomial set into matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg70810] old recursive polynomial set into matrices
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 28 Oct 2006 05:21:51 -0400 (EDT)
- References: <ehkcmn$jn9$1@smc.vnet.net> <ehmtvn$sdp$1@smc.vnet.net>
Here is a classical Chebyshev polynomial recursion as triangular sequence made into a matrix set and the result reconverted into a triangular sequence that "checks:". Clear[p, a, b, An] p[-1, x] = 0; p[0, x] = 1; p[1, x] = x + 1; p[k_, x_] := p[k, x] = 2*x*p[k - 1, x] - p[k - 2, x] Table[Expand[p[n, x]], {n, 0, 10}] Table[Sum[ CoefficientList[p[n, x], x][[m]], {m, 1, Length[CoefficientList[ p[n, x], x]]}], {n, 0, 15}] w = Table[CoefficientList[p[n, x], x], {n, 0, 10}] Flatten[w] An[d_] := Table[If[n == d && m < n, -w[[n]][[d - m + 1]], If[m == n + 1, 1, 0]], {n, 1, d}, {m, 1, d}] Table[An[d], {d, 1, 10}] Table[Det[An[d]]/2^(d - 2), {d, 1, 10}] Table[ExpandAll[y^(d - 1)*(CharacteristicPolynomial[An[d], x] /. x -> 1/y)] \ /. 1/y -> 1, {d, 1, 10}] Table[NSolve[CharacteristicPolynomial[An[d], x] == 0, x], {d, 2, 10}] Table[Abs[Flatten[b][[n]]] - Abs[Flatten[w][[ n]]], {n, 1, Min[Length[Flatten[b]], Length[Flatten[w]]]}]