       Re: Why is the negative root?

• To: mathgroup at smc.vnet.net
• Subject: [mg69608] Re: Why is the negative root?
• From: p-valko at tamu.edu
• Date: Sun, 17 Sep 2006 06:57:50 -0400 (EDT)
• References: <200609130803.EAA18412@smc.vnet.net><eee0fi\$6gl\$1@smc.vnet.net> <eegap1\$gp\$1@smc.vnet.net>

```Paul Abbott wrote:
> In this case, the single root can be represented by this radical. But
> modify your example slightly:
>   Reduce[{z^3 - z^2 - b z + 3 == 0, b > 0, z > 0}, z] // FullSimplify
> How would you prefer the result to be expressed now?

b > (-1 - 647/(50867 + 5904*Sqrt)^(1/3) + (50867 +
5904*Sqrt)^(1/3))/12 &&
((Sqrt[1 + 3*b] + (2 + 6*b)*Cos[(Pi/2 - ArcTan[(-79 +
9*b)/(3*Sqrt*Sqrt[-231 + 54*b + b^2 + 4*b^3])])/3])/
(3*Sqrt[1 + 3*b]) ||
(Sqrt[1 + 3*b] - (1 + 3*b)*Cos[(Pi/2 - ArcTan[(-79 +
9*b)/(3*Sqrt*Sqrt[-231 + 54*b + b^2 + 4*b^3])])/3] +
Sqrt*(1 + 3*b)*Sin[(Pi/2 - ArcTan[(-79 +
9*b)/(3*Sqrt*Sqrt[-231 + 54*b + b^2 + 4*b^3])])/3])/
(3*Sqrt[1 + 3*b]))

The answer is in every engineering handbook. They call it the "Cardano
formula".

Regards,
Peter

```

• Prev by Date: RE: Variables Within Homemade Functions
• Next by Date: attention 64 bit Mathematica users - would you please test a command for me?
• Previous by thread: Re: Why is the negative root?
• Next by thread: Re: Why is the negative root?