Re: linear secod order homogeneous differential equation recursions
- To: mathgroup at smc.vnet.net
- Subject: [mg69868] Re: [mg69852] linear secod order homogeneous differential equation recursions
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Tue, 26 Sep 2006 00:59:29 -0400 (EDT)
- References: <200609250753.DAA11496@smc.vnet.net>
Roger Bagula wrote: > Again I have a difficult problem. > I have this factorial based recursion: > a[n] = (a0*n^2 + b0*n + c0)*a[n - 2]/(n*(n - 1)) > > a[n]*n!=Integer > I want to get a form: > b[n]=a[n]*n! > I've tried your RSolve , but it doesn't give a form out I can use. > > M athematica: > Clear[a, a0, b0, c0] > 0 = 1; b0 = -2; c0 = -1; > a[n_] := a[n] = (a0*n^2 + b0*n + c0)*a[n > - 2]/(n*(n - 1)); a[0] = 1; a[1] = 1; > Table[ExpandAll[a[n]*n!], {n, 0, 30}] > {1, 1, -1, 2, -7, 28, -161, > 952, -7567, 59024, -597793, 5784352, -71137367, 821377984, -11879940289, > 159347328896, -2649226684447, > 40474221539584, -760328058436289, 13032699335746048, -272957772978627751, > 5187014335626927104, -119828462337617582689, 2500140909772178864128, > -63149599651924466077103, 1435080882209230668009472, > -39342200583148942366035169, 967244514609021470238384128, > -28601779823949281100107567863, 756385210424254789726416388096, > -23996893272293446842990249437057} > > Clear[a] > a[n_] := a[n] = -(n^2 - n - 1)*a[n > - 2]/(n*(n - 1)); a[0] = 1; a[1] = 1; > Table[a[n]*n!, {n, 0, 30}] > {1, 1, -1, -5, > 11, 95, -319, -3895, 17545, 276545, -1561505, -30143405, 204557155, > 4672227775, -37024845055, -976495604975, 8848937968145, 264630308948225, > -2698926080284225, -90238935351344725, 1022892984427721275, > 37810113912213439775, -471553665821179507775, -19094107525667787086375, > 259826069867469908784025, 11437370407875004464738625, > -168627119343987970800832225, -8017596655920378129781776125, > 127313475104710917954628329875, 6502270887951426663253020437375, > -110635409865993787702572018661375} > > Clear[a] > a[n_] := a[n] = (n - 2)*a[n > - 2]/(n*(n - 1)); a[0] = 1; a[1] = 1; > Table[a[n]*n!, {n, 0, 30}] > {1, 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0, > 2027025, 0, > 34459425, 0, 654729075, 0, 13749310575, 0, 316234143225, 0, > 7905853580625, 0, > 213458046676875, 0} > > > I didn't find these on my own: > they were recursion examples in an old differential equation text > I had. So far none of my results as a[n]*n! haven't been in OEIS. > These are solution to differtential equations of the type: > y''+p(x)*y'+q(x)*y=0 > f(x)=y=Sum[a[n]*(x-x0)^n,{n,0,Infinity}] > So in Taylor series terms I'm getting ( I think): > b[n]=D[f(x0),{x,n}] > a[n]=b[n]/n! > > I need a gerenal form for the derivatives b[n]. Here is one example, run in a development kernel. In[14]:= InputForm[an = a[n] /. First[RSolve[ {a[n] == -(n^2 - n - 1)*a[n- 2]/(n*(n - 1)), a[0] ==1, a[1] == 1}, a[n], n]]] Out[14]//InputForm= (I^n*2^(-2 + n)*((-I)*Gamma[3/4 - Sqrt[5]/4]*Gamma[3/4 + Sqrt[5]/4] + I*(-1)^n*Gamma[3/4 - Sqrt[5]/4]*Gamma[3/4 + Sqrt[5]/4] + 2*Gamma[5/4 - Sqrt[5]/4]*Gamma[5/4 + Sqrt[5]/4] + 2*(-1)^n*Gamma[5/4 - Sqrt[5]/4]*Gamma[5/4 + Sqrt[5]/4])* Gamma[3/4 - Sqrt[5]/4 + n/2]*Gamma[3/4 + Sqrt[5]/4 + n/2])/ (Gamma[3/4 - Sqrt[5]/4]*Gamma[5/4 - Sqrt[5]/4]*Gamma[3/4 + Sqrt[5]/4]* Gamma[5/4 + Sqrt[5]/4]*Gamma[1 + n]) FullSimplify with Assumptions->{n>0,Element[n,Integers]}] gives the result below. In[17]:= InputForm[an = FullSimplify[an, Assumptions->{n>0,Element[n,Integers]}]] Out[17]= ((-2)^n*Cos[(Sqrt[5]*Pi)/2]*Gamma[(3 - Sqrt[5] + 2*n)/4]* Gamma[(3 + Sqrt[5] + 2*n)/4]*(-2*Cos[(n*Pi)/2]*Gamma[(5 - Sqrt[5])/4]* Gamma[(5 + Sqrt[5])/4] + Gamma[(3 - Sqrt[5])/4]*Gamma[(3 + Sqrt[5])/4]* Sin[(n*Pi)/2]))/(Pi^2*n!) In[22]:= FullSimplify[Table[an*n!, {n,0,12}]] Out[22]= {1, 1, -1, -5, 11, 95, -319, -3895, 17545, 276545, -1561505, -30143405, 204557155} Daniel Lichtblau Wolfram Research
- References:
- linear secod order homogeneous differential equation recursions
- From: Roger Bagula <rlbagula@sbcglobal.net>
- linear secod order homogeneous differential equation recursions