Re: linear second order homogeneous differential equation recursions
- To: mathgroup at smc.vnet.net
- Subject: [mg69976] Re: linear second order homogeneous differential equation recursions
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Thu, 28 Sep 2006 06:17:06 -0400 (EDT)
- References: <200609250753.DAA11496@smc.vnet.net> <efactm$1vv$1@smc.vnet.net>
Daniel Lichtblau wrote: > >Out[17]= ((-2)^n*Cos[(Sqrt[5]*Pi)/2]*Gamma[(3 - Sqrt[5] + 2*n)/4]* > Gamma[(3 + Sqrt[5] + 2*n)/4]*(-2*Cos[(n*Pi)/2]*Gamma[(5 - Sqrt[5])/4]* > Gamma[(5 + Sqrt[5])/4] + Gamma[(3 - Sqrt[5])/4]*Gamma[(3 + Sqrt[5])/4]* > Sin[(n*Pi)/2]))/(Pi2*n!) > >In[22]:= FullSimplify[Table[an*n!, {n,0,12}]] >Out[22]= {1, 1, -1, -5, 11, 95, -319, -3895, 17545, 276545, -1561505, > -30143405, 204557155} > > >Daniel Lichtblau >Wolfram Research > > > Daniel Lichtblau, Thanks for your help. I have another more difficult problem. I came up with a new type of sequence: a[n]=f[n]*a[n-4]/(n*(n-1)*(n-2)*(n-3)) f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == 2*a[n - 1] - a[n - 2] + 1, a[0] == 1, a[1] == 2}, a[n], n][[1]] // FullSimplify] (1/2)(2 + n + n^2) Rationalize[N[Table[f[n], {n, 0, 25}], 100], 0] {1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326} Clear[a] a[n_] := a[n] = f[n]*a[n - 2]/(n*(n - 1)*(n - 2)*(n - 3)); a[0] = 1; a[1] = 1; a[2] = 1; a[3] = 1; Table[a[n + 2]*Gamma[n + 3]*Gamma[n + 1]/2, {n, 0, 30}] {1, 3, 11, 48, 242, 1392, 8954, 64032, 501424, 4290144, 39612496, 394693248, 4198924576, 47757883008, 575252666912, 7354713983232, 98943458708864, 1404750370797312, 20877069787570304, 325902086024976384, 5302775726042857216, 90274877828918458368, 1596135493538900022016, 29429610172227417427968, 561839693725692807749632, 11153822255274191205199872, 228668755346356972754100224, 4863066503299547365467144192, 106559639991402349303410704384, 2416944052139875040637170663424, 56370049555451842781504262619136} I had to move it up two terms or the Gammas give it Infinities. Your solution before when I get the powers right does work, but I can't compute it on my machine: it doesn't work. It gives an alternative method for my A123025 sequence! A123025 <http://www.research.att.com/%7Enjas/sequences/A123025> Simple Scaled differential equation recursion RF: a[n+2]=-(n^2-n+1)*(a(n))/((n+2)*(n+1)). +20 1 *1, 1, -1, -5, 11, 95, -319, -3895, 17545, 276545, -1561505, -30143405*, 204557155, 4672227775, -37024845055, -976495604975, 8848937968145, 264630308948225, -2698926080284225, -90238935351344725, 1022892984427721275, 37810113912213439775, -471553665821179507775 (list <http://www.research.att.com/%7Enjas/sequences/table?a=123025&fmt=4>; graph <http://www.research.att.com/%7Enjas/sequences/table?a=123025&fmt=5>) OFFSET 1,5 REFERENCES Richard Bronson,Schaum's Ouline of Modern Introductory Differential Equations, MacGraw-Hill, New York,1973,page 107, solved problem 19.17 FORMULA a(n) = -(n^2-n+1)*(a(n))/((n+2)*(n+1)) output= a(n)*n! MATHEMATICA a[n_] := a[n] = -(n^2 - n - 1)*a[n - 2]/(n*(n - 1)); a[0] = 1; a[1] = 1; Table[a[n]*n!, {n, 0, 30}] KEYWORD nonn,uned,new AUTHOR Roger Bagula (rlbagula(AT)sbcglobal.net), Sep 24 2006 Roger Bagula
- References:
- linear secod order homogeneous differential equation recursions
- From: Roger Bagula <rlbagula@sbcglobal.net>
- linear secod order homogeneous differential equation recursions