Re: (Not trivial) Definite Integration of a rational function
- To: mathgroup at smc.vnet.net
- Subject: [mg74772] Re: (Not trivial) Definite Integration of a rational function
- From: "David W.Cantrell" <DWCantrell at sigmaxi.net>
- Date: Wed, 4 Apr 2007 04:11:18 -0400 (EDT)
- References: <euslob$9nf$1@smc.vnet.net>
"dimitris" <dimmechan at yahoo.com> wrote: > I think it is time to open a new thread about integration, isn't it? > > Anyway...Here we go..(Mathematica 5.2 is used). > > f = HoldForm[Integrate[(2*x)/((x + 1)*(x^3 + 3*x^2 + 2*x + 1)), {x, 0, > Infinity}]] [snip] > Attempts to get an analytic result failed. [snip] > I wonder why Mathematica since it gets the indefinite integral, it > fails to evaluate the definite integral. Any ideas? Well, it succeeds in getting the following definite integral: Integrate[(2*x)/((x + 1)*(x^3 + 3*x^2 + 2*x + 1)), {x, 0, x1}, Assumptions -> x1 > 0] Then take the limit of that result as x1 -> Infinity and Simplify. You should get (2/23)*(Log[-Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]]*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]*(7 + 2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]) - Log[-Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 1]]*(5 + 4*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3] + 2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]^2 + 2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 2]*(2 + 6*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3] + 3*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]^2) + Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 2]^2*(2 + 6*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3] + 3*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]^2)) + Log[-Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 2]]*(4*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 2] + 2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 2]^2 - 3*(1 + 2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 1]*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]*(2 + Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]) + Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 1]^2*Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3]*(2 + Root[1 + 2*#1 + 3*#1^2 + #1^3 & , 3])))) which is correct. David