Re: N function problematic performance (V. 5.2)
- To: mathgroup at smc.vnet.net
- Subject: [mg74809] Re: N function problematic performance (V. 5.2)
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 6 Apr 2007 04:19:11 -0400 (EDT)
- References: <euvm6e$d7s$1@smc.vnet.net><ev2av0$kcp$1@smc.vnet.net>
But the question about the problematic behavior of the N function (Warning messages Infinity::"indet"... NSum::nsnum :... and failure to provide a numerical approximation in reasonable timing) still holds of course! Dimitris =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > As I said somewhere else we have Mathematica on one side > and on the other our mind. We can get the desirable results > if we bring mind&Mathematica together... > > As we see using Integrate on Sin[x - 1]/Sqrt[x*(x - 2)] gives a result in= terms > of MeijerG functions. But then N faces problems to get a numerical > estimation. > On the hand applying TrigToExp first gives a result again in terms of Mei= jerG > functions which is opposite of the correct result. > > However a trivial subsitution results in a very simple result very > quickly (bear in mind that > in previous result containg MeijerG functions neither FullSimplify nor > FunctionExpand > provides any simplifications). > > So... > > (*Ins*) > int = Simplify[(Sin[x - 1]/Sqrt[x*(x - 2)])*Dt[x] /. x -> t + 1] /. > Dt[t] -> 1 > Plot[int, {t, 1, 10}] > Timing[Integrate[int, {t, 1, Infinity}]] > {N[%[[2]],11], NIntegrate[int, {t, 1, Infinity}, Method -> > Oscillatory,WorkingPrecision->20,PrecisionGoal->10]} > > (*Outs*) > Sin[t]/Sqrt[-1 + t^2] > Graphics > {0.672*Second, (1/2)*Pi*BesselJ[0, 1]} > {1.2019697153, 1.2019697153} > > Dimitris > > =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > > Consider the following the definite integral > > > > h = HoldForm[Integrate[Sin[x - 1]/Sqrt[x*(x - 2)], {x, 2, Infinity}]] > > > > Here is a numerical estimation > > > > > > ReleaseHold[h /. Integrate[x___] :> NIntegrate[x, Method -> > > Oscillatory]] > > 1.2019697137297456 > > > > Here is the symbolic result by Mathematica > > > > Timing[hh = ReleaseHold[h]] > > > > {30.031000000000002*Second, (Pi*(Cos[1]*MeijerG[{{}, {1/4, 3/4}}, > {{0, > > 1/2, 1/2}, {0}}, 1] - > > MeijerG[{{}, {1/4, 3/4}}, {{0, 0, 1/2}, {1/2}}, 1]*Sin[1]))/ > > Sqrt[2]} > > > > Application of N function results in unexpected warnings and not in > > any estimation in reasonable timing... > > > > TimeConstrained[N[hh], 120] > > Infinity::"indet"... > > NSum::nsnum :... > > $Aborted > > > > What is going here? > > Did I encouter a known (problematic) situation? > > > > BTW, > > > > Integrate[TrigToExp[Sin[x - 1]/Sqrt[x*(x - 2)]], {x, 2, Infinity}] > > ((1/2)*I*Pi^(3/2)*(E^(2*I)*MeijerG[{{}, {1/2, 1/2}}, {{0, 0}, {1/2}}, > > -2*I] - MeijerG[{{}, {1/2, 1/2}}, {{0, 0}, {1/2}}, 2*I]))/ > > E^I > > > > Chop[N[%]] > > -1.2019697153172064 > > > > which is opposite of the correct result.