GenerateConditions setting
- To: mathgroup at smc.vnet.net
- Subject: [mg74829] GenerateConditions setting
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 7 Apr 2007 04:01:42 -0400 (EDT)
Sorry fellas if I asked something which have been already answered, but I couldn't find anything relevant in the archives. Anyway... GenerateConditions: determines if conditions on the parameters should be generated. Default: Automatic Admissible: True or False Also from the Help Browser ( FrontEndExecute[{HelpBrowserLookup["RefGuide", "GenerateConditions"]}] ) we read "The default setting is GenerateConditions->Automatic, which is equivalent to a setting of True for one dimensional integrals". So... 1) In[3]:= Integrate[Exp[a*x^2 + b*x^4], {x, -Infinity, Infinity}, GenerateConditions -> Automatic] Out[3]= If[Re[a] < 0 && Re[b] < 0, (Sqrt[-a]*BesselK[1/4, -(a^2/(8*b))])/ (E^(a^2/(8*b))*(2*Sqrt[-b])), Integrate[E^(a*x^2 + b*x^4), {x, -Infinity, Infinity}, Assumptions - > Re[b] >= 0 || Re[a] >= 0]] In[4]:= Integrate[Exp[a*x^2 + b*x^4], {x, -Infinity, Infinity}, GenerateConditions -> True] Out[4]= If[Re[a] < 0 && Re[b] < 0, (Sqrt[-a]*BesselK[1/4, -(a^2/(8*b))])/ (E^(a^2/(8*b))*(2*Sqrt[-b])), Integrate[E^(a*x^2 + b*x^4), {x, -Infinity, Infinity}, Assumptions - > Re[b] >= 0 || Re[a] >= 0]] 2) In[5]:= Integrate[x^=CE=B1*(Sin[x]/x - Cos[x])^2, {x, 0, Infinity}, GenerateConditions -> Automatic] Out[5]= If[Re[=CE=B1] < -1, 2^(-2 - =CE=B1)*((-4 + =CE=B1 - =CE=B1^2)*Gamma[-1 + = =CE=B1] - 4*Gamma[=CE=B1, 0])*Sin[(Pi*=CE=B1)/2], Integrate[x^(-2 + =CE=B1)*((-x)*Cos[x] + Sin[x])^2, {x, 0, Infinity}, Assumptions -> Re[=CE=B1] >= -1]] In[6]:= Integrate[x^=CE=B1*(Sin[x]/x - Cos[x])^2, {x, 0, Infinity}, GenerateConditions -> True] Out[6]= If[Re[=CE=B1] < -1, 2^(-2 - =CE=B1)*((-4 + =CE=B1 - =CE=B1^2)*Gamma[-1 + = =CE=B1] - 4*Gamma[=CE=B1, 0])*Sin[(Pi*=CE=B1)/2], Integrate[x^(-2 + =CE=B1)*((-x)*Cos[x] + Sin[x])^2, {x, 0, Infinity}, Assumptions -> Re[=CE=B1] >= -1]] 3) In[7]:= Integrate[Exp[(-s)*x]*x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateConditions -> Automatic] Out[7]= If[Re[s] > 0, (Sqrt[1 + 4/s^2]*s*Cos[(1/2)*ArcTan[2/s]] - Sin[(3/2)*ArcTan[2/s]])/((1 + 4/s^2)^(3/4)*s^3), Integrate[(x*BesselJ[0, x]*Cos[x])/E^(s*x), {x, 0, Infinity}, Assumptions -> Re[s] <= 0]] In[8]:= Integrate[Exp[(-s)*x]*x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateConditions -> True] Out[8]= If[Re[s] > 0, (Sqrt[1 + 4/s^2]*s*Cos[(1/2)*ArcTan[2/s]] - Sin[(3/2)*ArcTan[2/s]])/((1 + 4/s^2)^(3/4)*s^3), Integrate[(x*BesselJ[0, x]*Cos[x])/E^(s*x), {x, 0, Infinity}, Assumptions -> Re[s] <= 0]] 4) (this appeared recently) In[11]:= Integrate[x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateConditions -> Automatic] Out[11]= 0 In[12]:= Integrate[x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateConditions -> True] Integrate::idiv: Integral of x*BesselJ[0, x]*Cos[x] does not converge on {0,=E2=88=9E} Out[12]= Integrate[x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateConditions -> True] Consequently... Contrary to what the help browser says the two setting are not equivalent! It's obvious that the setting GenerateConditions -> True does a more extensive case. Can someone provide me with any insight/explanation? Thanks a lot. Dimitris