Re: bug in Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg74842] Re: bug in Integrate
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 7 Apr 2007 04:08:22 -0400 (EDT)
- References: <ev2b70$kh1$1@smc.vnet.net>
As another way In[1]:= hh=Integrate[Exp[(-s)*x]*x*BesselJ[0, x]*{Sin[x], Cos[x]}, {x, 0, Infinity}, Assumptions -> s > 0] Out[1]= {(2*((4 + s^2)/(4 + s^2 + s*Sqrt[4 + s^2]))^(3/2)*(-2*Sqrt[2] - 3*Sqrt[2 + 8/s^2] + (Sqrt[4 + s^2]*(4 + s^2 + s*Sqrt[4 + s^2])^(3/2)*Sin[(1/2)*ArcTan[2/s]])/s))/((1 + 4/s^2)^(9/4)*s^5), (Sqrt[4 + s^2]*Cos[(1/2)*ArcTan[2/s]] - Sin[(3/2)*ArcTan[2/s]])/ (s^(3/2)*(4 + s^2)^(3/4))} In[2]:= Limit[hh, s -> 0] Out[2]= {Infinity, Infinity} As a confirmation of the results In[8]:= N[(hh /. s -> #1 & ) /@ Range[10]] Out[8]= {{0.32471944675364234, 0.2710031717526413}, {0.10889239789833705, 0=2E12555398966201653}, {0.04723705733906774, 0.07530187654292698}, {0.02372791375802883, 0=2E049058779961475334}, {0.013311535465032668, 0.03398068316587049}, {0.008123089772996252, 0=2E024720911721638525}, {0.005288413183016432, 0.018703817682003413}, {0.0036221101290556963, 0.014604184230987695}, {0.002583487202588775, 0.011698744981742358}, {0.0019045195998024938, 0.009570907718712243}} In[13]:= (NIntegrate[Evaluate[Exp[(-#1)*x]*x*BesselJ[0, x]*{Sin[x], Cos[x]}], {x, 0, Infinity}] & ) /@ Range[10] Out[13]= {{0.32471946120480705, 0.2710031717512259}, {0.10889239874531485, 0=2E12555398989365918}, {0.04723705733892178, 0.0753018765429565}, {0.023727913758051007, 0=2E04905877992943386}, {0.013311535464778371, 0.033980683166515285}, {0.00812308977302087, 0=2E024720911721629768}, {0.0052884131830155095, 0.018703817682001973}, {0.0036221101290554517, 0.014604184230987848}, {0.0025834872025888352, 0.011698744981742434}, {0.0019045195998025199, 0.009570907718712215}} Dimitris =CF/=C7 Bhuvanesh =DD=E3=F1=E1=F8=E5: > Thanks for the report. This has already been fixed in the development ver= sion for quite a while. In this case, you can get the expected divergence u= sing GenerateConditions->True, which does more extensive checking: > > In[1]:= $Version > > Out[1]= 5.2 for Microsoft Windows (June 10, 2005) > > In[2]:= Integrate[x*BesselJ[0, x]*Cos[x], {x, 0, Infinity}, GenerateCon= ditions->True] > > Integrate::idiv: Integral of x BesselJ[0, x] Cos[x] does not converge on = {0, Infinity}. > > Out[2]= Integrate[x BesselJ[0, x] Cos[x], {x, 0, Infinity}, GenerateCon= ditions -> True] > > In[3]:= Integrate[x*BesselJ[0, x]*Sin[x], {x, 0, Infinity}, GenerateCon= ditions->True] > > Integrate::gener: Unable to check convergence. > > Integrate::idiv: Integral of x BesselJ[0, x] Sin[x] does not converge on = {0, Infinity}. > > Out[3]= Integrate[x BesselJ[0, x] Sin[x], {x, 0, Infinity}, GenerateCon= ditions -> True] > > Bhuvanesh, > Wolfram Research.