Infinity appears as a factor in Integrate result!
- To: mathgroup at smc.vnet.net
- Subject: [mg74862] Infinity appears as a factor in Integrate result!
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Mon, 9 Apr 2007 06:09:42 -0400 (EDT)
Consider the integral In[13]:= f = HoldForm[Integrate[1/(x^3 + a*x^2 + b*x + 1), {x, 0, Infinity}]] Then In[17]:= Integrate[1/(x^3 + a*x^2 + b*x + 1), {x, 0, Infinity}] Out[17]= If[(Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] != 0), -(Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]]/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]^2)) - Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]]/ (b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]^2) - Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]]/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]^2) + Infinity*(1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]^2)), Integrate[1/(1 + b*x + a*x^2 + x^3), {x, 0, Infinity}, Assumptions -> !((Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] != 0))]] In the results it appears Infinity!. For anyone who dosn't believe me try: In[18]:= %[[2]] Out[18]= -(Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]]/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]^2)) - Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]]/ (b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]^2) - Log[-Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]]/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]^2) + Infinity*(1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]^2)) The following term is multiplied with Infinity and the result of this product appeared in the results! In[19]:= Cases[%, (a_)*Infinity -> a] Out[19]= {1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]^2) + 1/(b + 2*a*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3] + 3*Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]^2)} Obviolusly Integarate algorithm failes for this integral. What is funnier is that In[20]:= Integrate[1/(x^3 + a*x^2 + b*x + 1), {x, 0, Infinity}] Out[20]= If[(Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] != 0) && (Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] <= 0 || Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] != 0), ComplexInfinity, Integrate[1/(1 + x*(b + x*(a + x))), {x, 0, Infinity}, Assumptions -> (Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] == 0 && Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 1]] > 0) || (Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] == 0 && Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 2]] > 0) || (Im[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] == 0 && Re[Root[1 + b*#1 + a*#1^2 + #1^3 & , 3]] > 0)]] I.e. if you try again to obtain the integral Mathematica returns ComplexInfinity! Dimitris