RootSum
- To: mathgroup at smc.vnet.net
- Subject: [mg74886] RootSum
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 10 Apr 2007 05:14:18 -0400 (EDT)
Working with integration of rational functions I came to the conclusion that when RootSum is generated in the course of the computation strange behavior of Mathematica (at least for me) takes place. In a recent thread I show one such example. As another example consider the integral of (x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6) in [0,Infinity). The indefinite integral obtained by Mathematica is F=Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), x] RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] which is of course correct. Together[D[F, x]] (7 + 6*x + x^3)/(6 + 3*x^3 + 4*x^4 + x^6) Application of the Newton-Leibniz formula to get from the andiderivative the requested definite integral fails. Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/ (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> Infinity] - Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/ (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> 0] Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/ (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> Infinity] - RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[-#1] + 6*Log[-#1]*#1 + Log[-#1]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] My question comes now... Since for integrals like this Mathematica uses (as it appears in a recent forum) the Newton-Leibniz formula how it can evaluate the definite integral? Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), {x, 0, Infinity}] -((Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]^3))) - (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]^3)) - (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]^3)) - (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]^3)) - (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]^3)) - (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]]*(7 + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6] + Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]^3))/(Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]^2* (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6] + 6*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]^3)) What am I missing here? Dimitris