Re: RootSum
- To: mathgroup at smc.vnet.net
- Subject: [mg74913] Re: RootSum
- From: "Michael Weyrauch" <michael.weyrauch at gmx.de>
- Date: Wed, 11 Apr 2007 01:55:17 -0400 (EDT)
- References: <evfkhu$73g$1@smc.vnet.net>
Hello, I think, here is nothing very mysterious... The antiderivative is F = Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), x] RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] The limit for x->Infinity is 0 as is easily obtained RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x] + 6*Log[x]*#1 + Log[x]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] 0 Therefore, the integral F is given by -RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[-#1] + 6*Log[-#1]*#1 + Log[-#1]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] according to Newton-Leibnitz. That this is the correct result is easily checked numerically. Directly calculating the definite integral yields F = Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), {x, 0, Infinity}] -RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (Log[-#1]*#1)/(9 + 16*#1 + 6*#1^3) & ] - 6*RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , Log[-#1]/(9*#1 + 16*#1^2 + 6*#1^4) & ] - 7*RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , Log[-#1]/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] which is equivalent to the pedestrian Newton-Leibnitz result given above. The only surprising thing may be the fact that the integrator in this example gets the limit x-> Infinity right, while in some other examples it does not do that. And also your way to calculate this limit using the build in command Limit[] does not seem to work properly... But this in not a problem of RootSum, but of Limit, I think... Regards Michael "dimitris" <dimmechan at yahoo.com> schrieb im Newsbeitrag news:evfkhu$73g$1 at smc.vnet.net... > Working with integration of rational functions I came to the > conclusion > that when RootSum is generated in the course of the computation > strange behavior of Mathematica (at least for me) takes place. > > In a recent thread I show one such example. > > As another example consider the integral of (x^3 + 6*x + 7)/(x^6 + > 4*x^4 + 3*x^3 + 6) > in [0,Infinity). > > The indefinite integral obtained by Mathematica is > > F=Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), x] > > RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x - > #1]*#1 + Log[x - #1]*#1^3)/(9*#1^2 + 16*#1^3 + 6*#1^5) & ] > > which is of course correct. > > Together[D[F, x]] > > (7 + 6*x + x^3)/(6 + 3*x^3 + 4*x^4 + x^6) > > Application of the Newton-Leibniz formula to get from the > andiderivative the requested > definite integral fails. > > Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x > - #1]*#1 + Log[x - #1]*#1^3)/ > (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> Infinity] - > Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + > 6*Log[x - #1]*#1 + Log[x - #1]*#1^3)/ > (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> 0] > > Limit[RootSum[6 + 3*#1^3 + 4*#1^4 + #1^6 & , (7*Log[x - #1] + 6*Log[x > - #1]*#1 + Log[x - #1]*#1^3)/ > (9*#1^2 + 16*#1^3 + 6*#1^5) & ], x -> Infinity] - RootSum[6 + > 3*#1^3 + 4*#1^4 + #1^6 & , > (7*Log[-#1] + 6*Log[-#1]*#1 + Log[-#1]*#1^3)/(9*#1^2 + 16*#1^3 + > 6*#1^5) & ] > > My question comes now... > > Since for integrals like this Mathematica uses (as it appears in a > recent forum) the Newton-Leibniz formula > how it can evaluate the definite integral? > > Integrate[(x^3 + 6*x + 7)/(x^6 + 4*x^4 + 3*x^3 + 6), {x, 0, Infinity}] > > -((Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 1] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 1]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 1] + 6*Root[6 + > 3*#1^3 + 4*#1^4 + #1^6 & , 1]^3))) - > (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 2] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 2]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 2] + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 2]^3)) - > (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 3] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 3]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 3] + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 3]^3)) - > (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 4] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 4]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 4] + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 4]^3)) - > (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 5] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 5]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 5] + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 5]^3)) - > (Log[-Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]]*(7 + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 6] + > Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6]^3))/(Root[6 + 3*#1^3 + > 4*#1^4 + #1^6 & , 6]^2* > (9 + 16*Root[6 + 3*#1^3 + 4*#1^4 + #1^6 & , 6] + 6*Root[6 + 3*#1^3 > + 4*#1^4 + #1^6 & , 6]^3)) > > > What am I missing here? > > Dimitris > >