MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

convergence conditions correction


(Part of Mathematica code was ommited in previous post. The present
version is
to be considered and ignore the first one.)

Hello.

Consider the integral

In[642]:=
f = HoldForm[Integrate[1/(x^2 + 2*a*x + 1), {x, 0, Infinity}]]

The following provides enough evidence that the integral converges
for a>-1.

In[679]:=
1/(x^2 + 2*a*x + 1) + O[x, 0]^4
1/(x^2 + 2*a*x + 1) + O[x, Infinity]^4
Reduce[x^2 + 2*a*x + 1 == 0 && x > 0 && a <= -1, x, Reals]
Reduce[x^2 + 2*a*x + 1 == 0 && x > 0 && a > -1, x, Reals]

Out[679]=
SeriesData[x, 0, {1, -2*a, -1 + 4*a^2, 4*a - 8*a^3}, 0, 4, 1]
Out[680]=
SeriesData[x, Infinity, {1, -2*a}, 2, 4, 1]
Out[681]=
(a < -1 && (x == -a - Sqrt[-1 + a^2] || x == -a + Sqrt[-1 + a^2])) =
||
(a == -1 && x == 1)
Out[682]=
False


However Mathematica returns

In[684]:=
ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a >
-1]]
Out[684]=
If[a >= Re[Sqrt[-1 + a^2]] || Im[Sqrt[-1 + a^2]] != 0, (Pi -
4*ArcTan[a/Sqrt[1 - a^2]] + 2*I*Log[-(I/Sqrt[1 - a])] +
    I*Log[1 - a])/(4*Sqrt[1 - a^2]), Integrate[1/(1 + 2*a*x + x^2),
{x, 0, Infinity},
   Assumptions -> Im[Sqrt[-1 + a^2]] == 0 && a < Re[Sqrt[-1 + a^2]]]]

which I do consider quite complicated.

However

In[689]:=
ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a >
1]]
ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a ==
1]]
ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> -1 < a
< 1]]

Out[689]=
Log[-1 + 2*a*(a + Sqrt[-1 + a^2])]/(2*Sqrt[-1 + a^2])
Out[690]=
1
Out[691]=
ArcCos[a]/Sqrt[1 - a^2]

In[697]:=
ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a <=
-1]]
Integrate::gener: Unable to check convergence.
Integrate::idiv: Integral of 1/(1 + 2*a*x + x^2) does not converge on
{0,=C3=A2=CB=86=C5=BE}.
Out[697]=
Integrate[1/(1 + 2*a*x + x^2), {x, 0, Infinity}, Assumptions -> a <
-1]

So, in view of these results (both are correct) would be better for
Integrate
to return something like the following for the setting Assumptions-
>a>-1?

ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a
>-1]]
If[-1<a<1, ArcCos[a]/Sqrt[1 - a^2], Log[-1 + 2*a*(a + Sqrt[-1 +
a^2])]/
(2*Sqrt[-1 + a^2])]


Dimitris



  • Prev by Date: Re: comments in import files
  • Next by Date: Re: Re: Question
  • Previous by thread: convergence conditions
  • Next by thread: Re: convergence conditions correction