convergence conditions correction
- To: mathgroup at smc.vnet.net
- Subject: [mg74916] convergence conditions correction
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 11 Apr 2007 01:56:51 -0400 (EDT)
(Part of Mathematica code was ommited in previous post. The present version is to be considered and ignore the first one.) Hello. Consider the integral In[642]:= f = HoldForm[Integrate[1/(x^2 + 2*a*x + 1), {x, 0, Infinity}]] The following provides enough evidence that the integral converges for a>-1. In[679]:= 1/(x^2 + 2*a*x + 1) + O[x, 0]^4 1/(x^2 + 2*a*x + 1) + O[x, Infinity]^4 Reduce[x^2 + 2*a*x + 1 == 0 && x > 0 && a <= -1, x, Reals] Reduce[x^2 + 2*a*x + 1 == 0 && x > 0 && a > -1, x, Reals] Out[679]= SeriesData[x, 0, {1, -2*a, -1 + 4*a^2, 4*a - 8*a^3}, 0, 4, 1] Out[680]= SeriesData[x, Infinity, {1, -2*a}, 2, 4, 1] Out[681]= (a < -1 && (x == -a - Sqrt[-1 + a^2] || x == -a + Sqrt[-1 + a^2])) = || (a == -1 && x == 1) Out[682]= False However Mathematica returns In[684]:= ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a > -1]] Out[684]= If[a >= Re[Sqrt[-1 + a^2]] || Im[Sqrt[-1 + a^2]] != 0, (Pi - 4*ArcTan[a/Sqrt[1 - a^2]] + 2*I*Log[-(I/Sqrt[1 - a])] + I*Log[1 - a])/(4*Sqrt[1 - a^2]), Integrate[1/(1 + 2*a*x + x^2), {x, 0, Infinity}, Assumptions -> Im[Sqrt[-1 + a^2]] == 0 && a < Re[Sqrt[-1 + a^2]]]] which I do consider quite complicated. However In[689]:= ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a > 1]] ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a == 1]] ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> -1 < a < 1]] Out[689]= Log[-1 + 2*a*(a + Sqrt[-1 + a^2])]/(2*Sqrt[-1 + a^2]) Out[690]= 1 Out[691]= ArcCos[a]/Sqrt[1 - a^2] In[697]:= ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a <= -1]] Integrate::gener: Unable to check convergence. Integrate::idiv: Integral of 1/(1 + 2*a*x + x^2) does not converge on {0,=C3=A2=CB=86=C5=BE}. Out[697]= Integrate[1/(1 + 2*a*x + x^2), {x, 0, Infinity}, Assumptions -> a < -1] So, in view of these results (both are correct) would be better for Integrate to return something like the following for the setting Assumptions- >a>-1? ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a >-1]] If[-1<a<1, ArcCos[a]/Sqrt[1 - a^2], Log[-1 + 2*a*(a + Sqrt[-1 + a^2])]/ (2*Sqrt[-1 + a^2])] Dimitris