MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Re: question


On 11 Apr 2007, at 15:01, Michael Weyrauch wrote:

> Hello,
>
>   well, I think your command
>
>> In[57]:=
>> FullSimplify[Log[x+1],ComplexityFunction\[Rule]
>> (Count[{#1},_Log,Infinity]&)]
>>
>
> fails, because Log[z] as implemented in Mathematica does not know
> the transformation rules back into Hypergeometric functions. If I  
> do it as
> follows under Mathematica 5.2 it  works without problems...
>
> Unprotect[Log];
>
> Simplify[Log[x + 1], ComplexityFunction ->
> (Count[{#1}, _Log, Infinity] & ),
> TransformationFunctions ->
> {Log[z_] := Hypergeometric2F1[1, 1, 2, -z + 1]*
> (z - 1)}]
>
> (*output*)
>
> x*Hypergeometric2F1[1, 1, 2, -x]
>
> Of course, I have to use Unprotect, since I am adding a rule to an  
> internal command.
>
> So, if for some reason I would like to "simplify" e.g. Log[x+1]^2  
> it works as exspected
>
> Simplify[Log[x + 1]^2, ComplexityFunction ->
> (Count[{#1}, _Log, Infinity] & ),
> TransformationFunctions ->
> {Log[z_] := Hypergeometric2F1[1, 1, 2, -z + 1]*
> (z - 1)}]
>
> (*output*)
>
> x^2*Hypergeometric2F1[1, 1, 2, -x]^2
>
> Therefore, I am not sure, if Andrzej Kozlowski is right here?
>
> Regards   Michael
>

I think I am ;-)

The reason why your code works is that by Unprotecting Log and then  
running Simplify with your new transformation function you have  
actually managed to modify the built-in definition of Log.

Observe that before modification:

In[1]:=
x*Hypergeometric2F1[1, 1, 2, -x]

Out[1]=
Log[x + 1]

But now let's run your code:

Unprotect[Log];

In[3]:=
Simplify[Log[x + 1]^2, ComplexityFunction ->
    (Count[{#1}, _Log, Infinity] & ),
   TransformationFunctions ->
    {Log[z_] := Hypergeometric2F1[1, 1, 2, -z + 1]*
       (z - 1)}]

Out[3]=
x^2*Hypergeometric2F1[1, 1, 2, -x]^2

It loks like you have achieved your purpose, but now try this:


Log[z]


(z - 1)*Hypergeometric2F1[1, 1, 2, 1 - z]

and, of course

x*Hypergeometric2F1[1, 1, 2, -x]


x*Hypergeometric2F1[1, 1, 2, -x]

Doesn't look like a very desirabe situation to me.

If one wants to restore the original behaviour of Log one needs to  
Clear it. But here is a nice puzzle (which I will leave to others to  
amuze themselves with  ;-))

The puzzle is that Log is still Protected even though we never used  
Protect only Unprotect:


Attributes[Log]

{Listable,NumericFunction,Protected,ReadProtected}

so we unprotect it again:

Unprotect[Log];

and then

Clear[Log]

restores the orignal behaviour:


Log[x]


Log[x]


x*Hypergeometric2F1[1, 1, 2, -x]

Log[x + 1]

Andrzej Kozlowski





  • Prev by Date: Re: Marking pivot elements in a matrix?
  • Next by Date: Fwd: ColorFunction help?
  • Previous by thread: Re: question
  • Next by thread: question