more in Assumptions 2

*To*: mathgroup at smc.vnet.net*Subject*: [mg74990] more in Assumptions 2*From*: "dimitris" <dimmechan at yahoo.com>*Date*: Fri, 13 Apr 2007 02:12:09 -0400 (EDT)

>So in Infinity there is not problem, whereas in zero, it must be c !=-1. I mean if c=-1 there is a non-integrable singularity at x=0. In[202]:= f[x, a, -1] + O[x]^6 Out[202]= SeriesData[x, 0, {1/(2*a), 0, -1/(4*a^2), 0, 1/(8*a^3), 0, -1/ (16*a^4)}, -2, 6, 1] In[201]:= Integrate[f[x, a, -1], {x, 0, Infinity}] Integrate::idiv: Integral of 1/(2*a*x^2 + x^4) does not converge on \ {0,Infinity}. Out[201]= Integrate[1/(2*a*x^2 + x^4), {x, 0, Infinity}] Dimitris