Re: CrossProduct in Spherical Coordinates
- To: mathgroup at smc.vnet.net
- Subject: [mg75316] Re: [mg75298] CrossProduct in Spherical Coordinates
- From: Murray Eisenberg <murray at math.umass.edu>
- Date: Wed, 25 Apr 2007 05:31:54 -0400 (EDT)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- References: <200704240726.DAA27495@smc.vnet.net>
- Reply-to: murray at math.umass.edu
Unless I misunderstand the docs for Calculus`VectorAnalysis`, the vectors you give as arguments to CrossProduct should already be given in the coordinate system you specify as the optional, 3rd argument. So I think what you want is: CrossProduct[{1,Pi/2,0},{1,Pi/2,Pi/2},Spherical] {1,0,0} After all: CoordinatesFromCartesian[{1,0,0},Spherical] CoordinatesFromCartesian[{0,1,0},Spherical] {1,Pi/2,0} {1,Pi/2,Pi/2} gogoant06 at yahoo.com.hk wrote: > Dear all, > > I am really new to mathematica and I have met a damn simple problem. > > In[1]:= > <<Calculus`VectorAnalysis` > > In[2]:= > CrossProduct[{1,0,0},{0,1,0},Spherical] > > Out[2]= > {0,0,0} > > Why? Isn't the result supposed to be {0,0,1}, even in spherical > coordinates? > > best regards, > lion > > -- Murray Eisenberg murray at math.umass.edu Mathematics & Statistics Dept. Lederle Graduate Research Tower phone 413 549-1020 (H) University of Massachusetts 413 545-2859 (W) 710 North Pleasant Street fax 413 545-1801 Amherst, MA 01003-9305
- References:
- CrossProduct in Spherical Coordinates
- From: gogoant06@yahoo.com.hk
- CrossProduct in Spherical Coordinates