Re: Other PDE heat equation
- To: mathgroup at smc.vnet.net
- Subject: [mg79737] Re: Other PDE heat equation
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Fri, 3 Aug 2007 06:25:03 -0400 (EDT)
- Organization: Universitaet Hannover
- References: <f8pkd4$2vr$1@smc.vnet.net>
Miguel schrieb: > How can I to resolve the unidirectional heat transmission for a plate > o slab: > > a=0.03;hc=1890;k=34;L=0.03; > > NDSolve[{a D[u[x,t],{x,2}]==D[u[x,t],t], > u[L,0]==600, (* Initial value: the plate has the same temperature *) > u[-L,0]==600, > u[0,0]==600, > (D[u[x,t],x]/.x->0)==0 (* Max. in centre *) > (D[u[x,t],x]/.x->L)==(-hc/k)(u[L,t]-600) (* Q convection = Q > conduction *) > u[L,t]==u[-L,t]}, (* Temper. symetric *) > u[x,t],{x,-L,L},{t,0,10}] > > NDSolve::ivone: Boundary values may only be specified for one \ > independent variable. Initial values may only be specified at one \ > value of the other independent variable. >> There are many. As I see the correct set of equations for your problem is Specify constants a=1; L=1; hc=1; k=1; Equations for first argument in NDSolve deqs={a Derivative[2,0][u][x,t]-Derivative[0,1][u][x,t]==0 (*PDE*), u[x,0]==600 (*starting values at t->0 for all x *), Derivative[1,0][u][L,t]==(-hc/k)(u[L,t]-600) (*right surface current at x=L for all t *), Derivative[1,0][u][-L,t]==(-hc/k)(u[-L,t]-600)(*left surface current *), } -- Roland Franzius