Re: Paul Abbott Chebyshev Article
- To: mathgroup at smc.vnet.net
- Subject: [mg79743] Re: [mg79699] Paul Abbott Chebyshev Article
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Fri, 3 Aug 2007 06:28:11 -0400 (EDT)
- References: <27830759.1186052816612.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Judging only from the code you posted, the subscripted T values are undefined, hence non-numeric... aAnd NIntegrate is a NUMERIC integrator. Switching to Integrate gives a result, but I have no idea whether it's what you want/expect. rhs = 1 + 1/Pi cs.Table[ Integrate[ Evaluate[Subscript[T, 2 i] (t)/((xs - t)^2 + 1)], {t, -1, 1}], {i, 0, n}] {1 + (1/\[Pi])((0.3024297615770403157 + 0.*10^-20 \[ImaginaryI]) Subscript[c, 0] Subscript[T, 0] + (0.3024297615770403157 + 0.*10^-20 \[ImaginaryI]) Subscript[ c, 1] Subscript[T, 2] + (0.3024297615770403157 + 0.*10^-20 \[ImaginaryI]) Subscript[ c, 2] Subscript[T, 4] + (0.3024297615770403157 + 0.*10^-20 \[ImaginaryI]) Subscript[ c, 3] Subscript[T, 6] + (0.3024297615770403157 + 0.*10^-20 \[ImaginaryI]) Subscript[ c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(0.3075250186147409060 Subscript[c, 0] Subscript[T, 0] + 0.3075250186147409060 Subscript[c, 1] Subscript[T, 2] + 0.3075250186147409060 Subscript[c, 2] Subscript[T, 4] + 0.3075250186147409060 Subscript[c, 3] Subscript[T, 6] + 0.3075250186147409060 Subscript[c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(0.2963397208662890505 Subscript[c, 0] Subscript[T, 0] + 0.2963397208662890505 Subscript[c, 1] Subscript[T, 2] + 0.2963397208662890505 Subscript[c, 2] Subscript[T, 4] + 0.2963397208662890505 Subscript[c, 3] Subscript[T, 6] + 0.2963397208662890505 Subscript[c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(0.2001910754770304786 Subscript[c, 0] Subscript[T, 0] + 0.2001910754770304786 Subscript[c, 1] Subscript[T, 2] + 0.2001910754770304786 Subscript[c, 2] Subscript[T, 4] + 0.2001910754770304786 Subscript[c, 3] Subscript[T, 6] + 0.2001910754770304786 Subscript[c, 4] Subscript[T, 8]), 1, 1 + (1/\[Pi])(-0.2001910754770304786 Subscript[c, 0] Subscript[T, 0] - 0.2001910754770304786 Subscript[c, 1] Subscript[T, 2] - 0.2001910754770304786 Subscript[c, 2] Subscript[T, 4] - 0.2001910754770304786 Subscript[c, 3] Subscript[T, 6] - 0.2001910754770304786 Subscript[c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(-0.2963397208662890505 Subscript[c, 0] Subscript[T, 0] - 0.2963397208662890505 Subscript[c, 1] Subscript[T, 2] - 0.2963397208662890505 Subscript[c, 2] Subscript[T, 4] - 0.2963397208662890505 Subscript[c, 3] Subscript[T, 6] - 0.2963397208662890505 Subscript[c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(-0.3075250186147409060 Subscript[c, 0] Subscript[T, 0] - 0.3075250186147409060 Subscript[c, 1] Subscript[T, 2] - 0.3075250186147409060 Subscript[c, 2] Subscript[T, 4] - 0.3075250186147409060 Subscript[c, 3] Subscript[T, 6] - 0.3075250186147409060 Subscript[c, 4] Subscript[T, 8]), 1 + (1/\[Pi])(-0.3024297615770403157 Subscript[c, 0] Subscript[T, 0] - 0.3024297615770403157 Subscript[c, 1] Subscript[T, 2] - 0.3024297615770403157 Subscript[c, 2] Subscript[T, 4] - 0.3024297615770403157 Subscript[c, 3] Subscript[T, 6] - 0.3024297615770403157 Subscript[c, 4] Subscript[T, 8])} Bobby On Thu, 02 Aug 2007 02:48:13 -0500, Angela Kou <Akou at lbl.gov> wrote: > Hi: > > I'm trying to test Paul Abbott's code in his article on integral > equation solving using Chebyshev polynomials (Mathematica Journal 8(4)) > but Mathematica keeps giving me an error when I get to NIntegrate. This > is the code: > n=4; xs = N[Cos[Range[0, 2 n] Pi/(2 n)], 20]; > cs = Thread[Subscript[c, Range[0, n]]]; > lhs = cs.Table[Subscript[T, 2 i] (xs), {i, 0, n}]; > rhs = 1 + 1/Pi cs.Table[NIntegrate[Evaluate[Subscript[T, 2 i] (t)/((xs - > t)^2 + 1)], {t, -1, 1}, WorkingPrecision ->20], {i, 0, n}]; > > the last line of code keeps giving me the error that "NIntegrate::inumr: > The integrand (t Subscript[T,0])/(1+(1.0000000000000000000-t)^2) has > evaluated to non-numerical values for all sampling points in the region > with boundaries {{-1,0}}. >> > > I'm not quite sure why this is the case? > > Thanks, > Angela Kou > > -- DrMajorBob at bigfoot.com