Integration of Singular function
- To: mathgroup at smc.vnet.net
- Subject: [mg79923] Integration of Singular function
- From: Khandelwal <ratneshk at gmail.com>
- Date: Thu, 9 Aug 2007 05:11:38 -0400 (EDT)
Hello, I am having trouble integrating the following functions in Mathematica II=Table[{t, NIntegrate[ rf1[x, y], {y, -\[Infinity], 0}, {x, -\[Infinity], \[Infinity]}, MaxRecursion -> 60, Method -> MonteCarlo[24], MaxPoints -> 500000000] + NIntegrate[ rf2[x, y], {y, 0, \[Infinity]}, {x, -\[Infinity], \[Infinity]}, MaxRecursion -> 60, Method -> MonteCarlo[24], MaxPoints -> 500000000]}, {t, 0.0001, 5, 0.2}] rf1[x_,y_]=(0.0666667 \[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) Im[((1 + 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/2)])/t rf1[x_,y_]=(0.621099 (\[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) - 1/3 \[ExponentialE]^-((-1 + x)^2 + (1 + y)^2)/(4 t)) Im[((1 + 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/2)])/t My problem is though i'm taking too large value of MaxPoints (MaxPoints -> 500000000), because of that it's takes lot of time, but still for some inital small value of t(0.0001) its not conversing. I want to plot (t,II), where t->(0,5). Just wondering if there is other better way of dealing this integration!! -- Regards, Ratnesh Khandelwal IISc,Bangalore,INDIA