Re: Integration of Singular function
- To: mathgroup at smc.vnet.net
- Subject: [mg80015] Re: Integration of Singular function
- From: antononcube <antononcube at gmail.com>
- Date: Fri, 10 Aug 2007 06:42:03 -0400 (EDT)
- References: <f9elv3$jiv$1@smc.vnet.net>
In version 6.0 you can use the method AdaptiveMonteCarlo: In[183]:= Clear[rf1, rf2]; In[184]:= rf1[x_, y_] := (0.0666667 \[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) Im[((1 + 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/ 2)])/t In[185]:= rf2[x_, y_] := (0.621099 (\[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) - 1/ 3 \[ExponentialE]^-((-1 + x)^2 + (1 + y)^2)/(4 t)) Im[((1 + 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/ 2)])/t In[190]:= II = Table[{t, NIntegrate[ rf1[x, y], {y, -\[Infinity], 0}, {x, -\[Infinity], \[Infinity]}, MaxRecursion -> 60, Method -> AdaptiveMonteCarlo, MaxPoints -> 500000000] + NIntegrate[ rf2[x, y], {y, 0, \[Infinity]}, {x, -\[Infinity], \[Infinity]}, MaxRecursion -> 60, Method -> AdaptiveMonteCarlo, MaxPoints -> 500000000]}, {t, 0.0001, 5, 0.2}]; // Timing Out[190]= {21.4577, Null} On Aug 9, 4:15 am, Khandelwal <ratne... at gmail.com> wrote: > Hello, > > I am having trouble integrating the following functions in > Mathematica > > II=Table[{t, > NIntegrate[ > rf1[x, y], {y, -\[Infinity], 0}, {x, -\[Infinity], \[Infinity]}, > MaxRecursion -> 60, Method -> MonteCarlo[24], > MaxPoints -> 500000000] + > NIntegrate[ > rf2[x, y], {y, 0, \[Infinity]}, {x, -\[Infinity], \[Infinity]}, > MaxRecursion -> 60, Method -> MonteCarlo[24], > MaxPoints -> 500000000]}, {t, 0.0001, 5, 0.2}] > > rf1[x_,y_]=(0.0666667 \[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) > Im[((1 + 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( > 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( > 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/2)])/t > > rf1[x_,y_]=(0.621099 (\[ExponentialE]^-((-1 + x)^2 + (-1 + y)^2)/(4 t) - > 1/3 \[ExponentialE]^-((-1 + x)^2 + (1 + y)^2)/(4 t)) Im[((1 + > 0.1516 \[ImaginaryI]) (1 + x + \[ImaginaryI] y) (( > 1 + x + \[ImaginaryI] y)/(-1 + x + \[ImaginaryI] y))^( > 0.0758 \[ImaginaryI]))/(-1 + (x + \[ImaginaryI] y)^2)^(3/2)])/t > > My problem is though i'm taking too large value of MaxPoints > (MaxPoints -> 500000000), because of that it's takes lot of time, but > still for some inital small value of t(0.0001) its not conversing. I > want to plot (t,II), where t->(0,5). Just wondering if there is other > better way of dealing this integration!! > > -- > Regards, > Ratnesh Khandelwal > IISc,Bangalore,INDIA