Re: question
- To: mathgroup at smc.vnet.net
- Subject: [mg80076] Re: [mg80065] question
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 12 Aug 2007 07:11:19 -0400 (EDT)
- Reply-to: hanlonr at cox.net
$Version 6.0 for Mac OS X x86 (32-bit) (June 19, 2007) expr = FourierTransform[Sign[y]*Sign[a*y], y, q] (-Sqrt[2*Pi])*DiracDelta[q]* UnitStep[-a] - (I*Sqrt[2/Pi]*UnitStep[a]* UnitStep[-a])/q + Sqrt[2*Pi]*DiracDelta[q]* UnitStep[a] Simplify[expr, a > 0] Sqrt[2*Pi]*DiracDelta[q] Assuming[{a > 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] Sqrt[2*Pi]*DiracDelta[q] Simplify[expr, a < 0] (-Sqrt[2*Pi])*DiracDelta[q] Assuming[{a < 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] (-Sqrt[2*Pi])*DiracDelta[q] x1 = FullSimplify[expr, a != 0] Sqrt[2*Pi]*DiracDelta[q]* UnitStep[a] - Sqrt[2*Pi]* DiracDelta[q]*UnitStep[-a] x2 = Assuming[{a != 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] 2*Sqrt[2*Pi]*DiracDelta[q]* UnitStep[a] - Sqrt[2*Pi]* DiracDelta[q] Simplify[x2 - x1, #] & /@ {a > 0, a < 0} {0,0} Bob Hanlon ---- dimitris <dimmechan at yahoo.com> wrote: > Let's see if Mathematica 6 has become better. > > In Mathematica 5.2 (and as well 6; as it > was mentioned in a recent thread). > > In[11]:= > FourierTransform[Sign[y]*Sign[y], y, q] > > Out[11]= > Sqrt[2*Pi]*DiracDelta[q] > > which is correct. > > In Mathematica 5.2 > > In[5]:= > FourierTransform[Sign[y]*Sign[a*y], y, q] > > Out[5]= > (1/q)*((I*(1 - E^(I*q*Sqrt[1/Integrate`NLtheoremDump`myMax[0, > 0]^2]*Integrate`NLtheoremDump`myMax[0, 0]^2) + > E^(2*I*q*Sqrt[1/Integrate`NLtheoremDump`myMax[0, > 0]^2]*Integrate`NLtheoremDump`myMax[0, 0]^2))*Sqrt[2/Pi]* > (2 + DiscreteDelta[a] - UnitStep[-a] - UnitStep[a]))/E^(I*q*Sqrt[1/ > Integrate`NLtheoremDump`myMax[0, 0]^2]* > Integrate`NLtheoremDump`myMax[0, 0]^2)) > > I think outputs like this is a mini nightmare for the developers. > > What does version 6 returns? > > Thanks > Dimitris > >