Re: question
- To: mathgroup at smc.vnet.net
- Subject: [mg80108] Re: question
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 13 Aug 2007 04:23:46 -0400 (EDT)
- References: <f9mq4l$r0q$1@smc.vnet.net>
On 12 , 14:15, Bob Hanlon <hanl... at cox.net> wrote: > $Version > > 6.0 for Mac OS X x86 (32-bit) (June 19, 2007) > > expr = FourierTransform[Sign[y]*Sign[a*y], y, q] > > (-Sqrt[2*Pi])*DiracDelta[q]* > UnitStep[-a] - > (I*Sqrt[2/Pi]*UnitStep[a]* > UnitStep[-a])/q + > Sqrt[2*Pi]*DiracDelta[q]* > UnitStep[a] > > Simplify[expr, a > 0] > > Sqrt[2*Pi]*DiracDelta[q] > > Assuming[{a > 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] > > Sqrt[2*Pi]*DiracDelta[q] > > Simplify[expr, a < 0] > > (-Sqrt[2*Pi])*DiracDelta[q] > > Assuming[{a < 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] > > (-Sqrt[2*Pi])*DiracDelta[q] > > x1 = FullSimplify[expr, a != 0] > > Sqrt[2*Pi]*DiracDelta[q]* > UnitStep[a] - Sqrt[2*Pi]* > DiracDelta[q]*UnitStep[-a] > > x2 = Assuming[{a != 0}, FourierTransform[Sign[y]*Sign[a*y], y, q]] > > 2*Sqrt[2*Pi]*DiracDelta[q]* > UnitStep[a] - Sqrt[2*Pi]* > DiracDelta[q] > > Simplify[x2 - x1, #] & /@ {a > 0, a < 0} > > {0,0} > > Bob Hanlon > > > > ---- dimitris <dimmec... at yahoo.com> wrote: > > Let's see if Mathematica 6 has become better. > > > In Mathematica 5.2 (and as well 6; as it > > was mentioned in a recent thread). > > > In[11]:= > > FourierTransform[Sign[y]*Sign[y], y, q] > > > Out[11]= > > Sqrt[2*Pi]*DiracDelta[q] > > > which is correct. > > > In Mathematica 5.2 > > > In[5]:= > > FourierTransform[Sign[y]*Sign[a*y], y, q] > > > Out[5]= > > (1/q)*((I*(1 - E^(I*q*Sqrt[1/Integrate`NLtheoremDump`myMax[0, > > 0]^2]*Integrate`NLtheoremDump`myMax[0, 0]^2) + > > E^(2*I*q*Sqrt[1/Integrate`NLtheoremDump`myMax[0, > > 0]^2]*Integrate`NLtheoremDump`myMax[0, 0]^2))*Sqrt[2/Pi]* > > (2 + DiscreteDelta[a] - UnitStep[-a] - UnitStep[a]))/E^(I*q*Sqrt[1/ > > Integrate`NLtheoremDump`myMax[0, 0]^2]* > > Integrate`NLtheoremDump`myMax[0, 0]^2)) > > > I think outputs like this is a mini nightmare for the developers. > > > What does version 6 returns? > > > Thanks > > Dimitris- - > > - - Much better in Mathematica 6 I believe! Cheers, Dimitris