Re: Foucault pendulum
- To: mathgroup at smc.vnet.net
- Subject: [mg80147] Re: Foucault pendulum
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 14 Aug 2007 06:49:19 -0400 (EDT)
- Organization: Uni Leipzig
- References: <f9mq8f$r63$1@smc.vnet.net> <f9p4db$qdh$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, sorry the last version has a bug here is a nicer version pendelPos[{x_, y_}] := {x, y, -Sqrt[10 - x^2 - y^2]} pendel[tau_?NumericQ, sol_] := ({AbsoluteThickness[3], Line[{{0, 0, 0}, pendelPos[{x[t], y[t]}]}], Sphere[pendelPos[{x[t], y[t]}], 0.15]} /. sol[[1]]) /. t -> tau Manipulate[ DynamicModule[{traj, sol, fed, fulltraj}, fde = {x''[t] == -\[Omega]^2*x[t] + 2 \[CapitalOmega]*Sin[\[Phi]]*y'[t] , y''[t] == -\[Omega]^2*y[t] - 2 \[CapitalOmega]*Sin[\[Phi]]*x'[t]}; sol = NDSolve[ Join[fde, {x[0] == 2, y[0] == 2, x'[0] == 0, y'[0] == 0}], {x[t], y[t]}, {t, 0, 64 Pi}, MaxSteps -> Infinity]; fulltraj = ParametricPlot3D[ {x[t], y[t], -4} /. sol[[1]], {t, 0, 64 Pi}, PlotPoints -> 1024 ]; traj = ParametricPlot3D[ pendelPos[{x[t], y[t]} /. sol[[1]]], {t, t1, t1 + 4 Pi}, PlotStyle -> RGBColor[1, 0, 0] ]; Graphics3D[ {traj[[1]], fulltraj[[1]], pendel[t1, sol]}, PlotRange -> {{-2.5, 2.5}, {-2.5, 2.5}, {-4, 0}} ]], {{\[Omega], 1, "Pendel Frequence"}, 0.1, 10}, {{\[CapitalOmega], 1/16, "Earth Circum Frequence"}, 0, 1/2}, {{\[Phi], Pi/3, "Latitude"}, 0, Pi/2}, {{t1, 0, "time"}, 0, 60 Pi} ] Regards Jens dimitris wrote: > On 12 , 14:17, dimitris <dimmec... at yahoo.com> wrote: >> Hello. >> Does anyone have notebooks >> demonstrating Foucault's pendulum? >> >> Thanks >> Dimitris > > I mean the motion of a Foucalt's pendulum of course. > > Dimitris > >