Re: Foucault pendulum

• To: mathgroup at smc.vnet.net
• Subject: [mg80206] Re: Foucault pendulum
• From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
• Date: Tue, 14 Aug 2007 07:20:01 -0400 (EDT)
• Organization: Uni Leipzig
• References: <f9mq8f\$r63\$1@smc.vnet.net>

```Hi,

something like this:

fde =
{x''[t] == -\[Omega]^2*x[t] + 2 \[CapitalOmega]*Sin[\[Phi]]*y'[t] ,
y''[t] == -\[Omega]^2*y[t] - 2 \[CapitalOmega]*Sin[\[Phi]]*x'[t]};

Block[{\[Omega] = 1, \[CapitalOmega] = 1/16, \[Phi] = Pi/6},
sol = NDSolve[
Join[fde, {x[0] == 1, y[0] == 1, x'[0] == 0, y'[0] == 0}],
{x[t], y[t]}, {t, 0, 64 Pi}]
]

pendelPos[{x_, y_}] := {x, y, -Sqrt[10 - x - y]}

pendel[tau_?
NumericQ] := ({Line[{{0, 0, 0}, pendelPos[{x[t], y[t]}]}],
Sphere[pendelPos[{x[t], y[t]}], 0.15]} /. sol[[1]]) /. t -> tau

Manipulate[
DynamicModule[{traj},
traj = ParametricPlot3D[
pendelPos[{x[t], y[t]} ] /. sol[[1]], {t, t1, t1 + 4 Pi}
];
Graphics3D[
{traj[[1]], pendel[t1]}, PlotRange -> {{-2, 2}, {-2, 2}, {-4, 0}}
]], {t1, 0, 60 Pi}
]

Regards
Jens

dimitris wrote:
> Hello.
> Does anyone have notebooks
> demonstrating Foucault's pendulum?
>
> Thanks
> Dimitris
>
>

```

• Prev by Date: Re: reading from file
• Next by Date: Matheamatica 6 + Dual G5 = highly unstable??
• Previous by thread: Re: Foucault pendulum
• Next by thread: Re: Foucault pendulum