Re: Iteratively determing successive values from previous values....
- To: mathgroup at smc.vnet.net
- Subject: [mg80412] Re: Iteratively determing successive values from previous values....
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet at gmail.com>
- Date: Wed, 22 Aug 2007 04:36:25 -0400 (EDT)
- References: <fabnc6$419$1@smc.vnet.net> <46C96DC6.3000906@gmail.com>
ashesh cb <ashesh.cb at gmail.com> wrote: > Sir, > > Thank you for your response. I have attached a Mathematica notebook in which > I have represented what I exactly need. > > In the attached file, I have computed up to X_4 and Y_4. but, I actually > need to calculate up to X_15 and Y_15. I want to do these calculations > recursively so that I do not have to copy-paste the code for each higher > term manually. Here is the content of the attached notebook: (* Beginning of program1.nb *) Subscript[x, 2] = Subscript[x, 1] - m Subscript[\[Sigma], 1] Subscript[y, 1] 2^-i; Subscript[y, 2] = Subscript[y, 1] + Subscript[\[Sigma], 1] Subscript[x, 1] 2^-i; Subscript[x, 3] = Subscript[x, 2] - m Subscript[\[Sigma], 2] Subscript[y, 2] 2^(-2 i); Subscript[y, 3] = Subscript[y, 2] + Subscript[\[Sigma], 2] Subscript[x, 2] 2^(-2 i); Subscript[x, 4] = Subscript[x, 3] - m Subscript[\[Sigma], 3] Subscript[y, 3] 2^(-3 i); Subscript[y, 4] = Subscript[y, 3] + Subscript[\[Sigma], 3] Subscript[x, 3] 2^(-3 i); Subscript[x, 5] = Subscript[x, 4] - m Subscript[\[Sigma], 4] Subscript[y, 4] 2^(-4 i); Subscript[y, 5] = Subscript[y, 4] + Subscript[\[Sigma], 4] Subscript[x, 4] 2^(-4 i); Subscript[x, 6] = Subscript[x, 5] - m Subscript[\[Sigma], 5] Subscript[y, 5] 2^(-5 i); Subscript[y, 6] = Subscript[y, 5] + Subscript[\[Sigma], 5] Subscript[x, 5] 2^(-5 i); Subscript[x, 7] = Collect[ Subscript[x, 6] - m Subscript[\[Sigma], 6] Subscript[y, 6] 2^(-6 i), {Subscript[x, 1], Subscript[y, 1]}] Subscript[y, 7] = Collect[ Subscript[y, 6] + Subscript[\[Sigma], 6] Subscript[x, 6] 2^(-6 i), {Subscript[x, 1], Subscript[y, 1]}] (* End of prgram1.nb *) I believe that you should not have the free variable 'i' hanging around. Anyway, what you are looking for is a recursive definition of the coupled difference equations. You can do that as follows. In[1]:= Clear[x, y]; x[1] = Subscript[x, 1]; y[1] = Subscript[y, 1]; x[n_] := x[n] = x[n - 1] - m Subscript[\[Sigma], n - 1] y[n - 1] 2^(-(n - 1) i) y[n_] := y[n] = y[n - 1] + Subscript[\[Sigma], n - 1] x[n - 1] 2^(-(n - 1) i) In[6]:= Table[{x[n], y[n]}, {n, 4}] Out[6]= {{Subscript[x, 1], Subscript[y, 1]}, {Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1], Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1]}, {Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1] - 2^(-2 i) m (Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2], Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1] + 2^(-2 i) (Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2]}, {Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1] - 2^(-2 i) m (Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2] - 2^(-3 i) m (Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1] + 2^(-2 i) (Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2]) Subscript[\[Sigma], 3], Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1] + 2^(-2 i) (Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2] + 2^(-3 i) (Subscript[x, 1] - 2^-i m Subscript[y, 1] Subscript[\[Sigma], 1] - 2^(-2 i) m (Subscript[y, 1] + 2^-i Subscript[x, 1] Subscript[\[Sigma], 1]) Subscript[\[Sigma], 2]) Subscript[\[Sigma], 3]}} > In addition to the calculations, I need to know as to how many terms are > there in each of the for x_1 and y_1 for each of x_4 and y_4. In addition to > that, I need to know as to how many terms form each component of x_1 and y_1 > and what the power of 2 is?. > > That is corresponding to x_4 => > > 1. I need to know that there are 4 terms which have x1 in common and 4 with > y1 in common. You could use Collect and Length as in In[7]:= Collect[x[4], {Subscript[x, 1], Subscript[y, 1]}] Out[7]= Subscript[x, 1] (1 - 2^(-3 i) m Subscript[\[Sigma], 1] Subscript[\[Sigma], 2] - 2^(-4 i) m Subscript[\[Sigma], 1] Subscript[\[Sigma], 3] - 2^(-5 i) m Subscript[\[Sigma], 2] Subscript[\[Sigma], 3]) + Subscript[y, 1] (-2^-i m Subscript[\[Sigma], 1] - 2^(-2 i) m Subscript[\[Sigma], 2] - 2^(-3 i) m Subscript[\[Sigma], 3] + 2^(-6 i) m^2 Subscript[\[Sigma], 1] Subscript[\[Sigma], 2] Subscript[\[Sigma], 3]) In[8]:= Length[Collect[x[4], Subscript[x, 1]]] - 1 Out[8]= 4 In[9]:= Length[Collect[x[4], Subscript[y, 1]]] - 1 Out[9]= 4 > 2. How many sigma's are there with each of the 4 terms that have x1 in > common and what their signs are? Similar details for y1 are needed > > The paper in which the above iterative procedure was implemented is also > attached to this email. The authors had implemented it using another > programming language (page 184-185). The authors have tabulated the details > corresponding to (x4, x5 in page 185) in Table.1. I was unable to think as > to how it can be done in another CAS, so I have been trying to do it in > MATHEMATICA. > > I will be thankful for any help in implementation of the above procedure. > > Thanking you. > > with regards, > Ashesh -- Jean-Marc