Manipulate a VectorFieldPlot3D
- To: mathgroup at smc.vnet.net
- Subject: [mg80464] Manipulate a VectorFieldPlot3D
- From: Mathieu G <ellocomateo at free.fr>
- Date: Thu, 23 Aug 2007 01:03:55 -0400 (EDT)
Hello, I would like to 3D plot two time dependent fields E and B. I have two questions about the current state of my notebook: Why the options Axes and AxesLabel produce an error, while producing the expected behaviour (adding the axes label!) How can I have a Manipulate object that would allow me to scan over time? Thanks for your help! Mathieu Clear["Global`*"] << PhysicalConstants` Needs["VectorFieldPlots`"] c = 299792458;(*SpeedOfLight*) \[Mu] = \[Pi]/2500000;(*VacuumPermeability*) \[Epsilon] = 8.854187817`*^-12;(*VacuumPermittivity*) \[Omega] = 1;(*Angular speed*) p = 1;(*Unit dipole moment*) k = \[Omega]/c;(*Norm of the wave vector*) r = Norm[{x, y, z}];(*Norm of the position vector*) t = 10;(*Time*) a = 10; Slider[Dynamic[t],{0,100}] Ex = (y^2 + z^2) Cos[\[Omega] Dynamic[t] - k r] - x y Sin[\[Omega] Dynamic[t] - k r]; Ey = (x^2 + z^2) Sin[\[Omega] Dynamic[t] - k r] - x y Cos[\[Omega] Dynamic[t] - k r]; Ez = z (x Cos[\[Omega] Dynamic[t] - k r] + y Sin[\[Omega] Dynamic[t] - k r]); Bx = -z Sin[\[Omega] Dynamic[t] - k r]; By = z Cos[\[Omega] Dynamic[t] - k r]; Bz = x Sin[\[Omega] Dynamic[t] - k r] - y Cos[\[Omega] Dynamic[t] - k r]; VectorFieldPlot3D[ (\[Omega]^2 p / 4 \[Pi] \[Epsilon] c^2 r^3) { Ex, Ey, Ez } , {x, -a, a}, {y, -a, a}, {z, -a, a} , VectorHeads -> True , Axes -> True , AxesLabel -> {x, y, z} ] VectorFieldPlot3D[ (\[Mu] \[Omega]^2 p / 4 \[Pi] c r^2) { Bx, By, Bz } , {x, -a, a}, {y, -a, a}, {z, -a, a} , VectorHeads -> True , Axes -> True , AxesLabel -> {x, y, z} ]