Re: Manipulate a VectorFieldPlot3D
- To: mathgroup at smc.vnet.net
- Subject: [mg80507] Re: Manipulate a VectorFieldPlot3D
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Thu, 23 Aug 2007 06:27:17 -0400 (EDT)
- Organization: Uni Leipzig
- References: <faj4u1$8rp$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, << PhysicalConstants` Needs["VectorFieldPlots`"] c = 299792458;(*SpeedOfLight*)\[Mu] = \[Pi]/ 2500000;(*VacuumPermeability*)\[Epsilon] = \ 8.854187817`*^-12;(*VacuumPermittivity*)\[Omega] = 1;(*Angular \ speed*)p = 1;(*Unit dipole moment*)k = \[Omega]/ c;(*Norm of the wave vector*)r = Norm[{x, y, z}]; (*Norm of the position vector*) t = 10;(*Time*)a = 10; Ex[t_] := (y^2 + z^2) Cos[\[Omega] t - k r] - x y Sin[\[Omega] t - k r]; Ey[t_] := (x^2 + z^2) Sin[\[Omega] t - k r] - x y Cos[\[Omega] t - k r]; Ez[t_] := z (x Cos[\[Omega] t - k r] + y Sin[\[Omega] t - k r]); Bx[t_] := -z Sin[\[Omega] t - k r]; By[t_] := z Cos[\[Omega] t - k r]; Bz[t_] := x Sin[\[Omega] t - k r] - y Cos[\[Omega] t - k r]; Manipulate[GraphicsRow[{ VectorFieldPlot3D[(\[Omega]^2 p/4 \[Pi] \[Epsilon] c^2 r^3) {Ex[t], Ey[t], Ez[t]}, {x, -a, a}, {y, -a, a}, {z, -a, a}, VectorHeads -> True, Axes -> True, AxesLabel -> {x, y, z}], VectorFieldPlot3D[(\[Mu] \[Omega]^2 p/4 \[Pi] c r^2) {Bx[t], By[t], Bz[t]}, {x, -a, a}, {y, -a, a}, {z, -a, a}, VectorHeads -> True, Axes -> True, AxesLabel -> {x, y, z}]}], {{t, 0}, 0, 100} ] may help. Regards Jens Mathieu G wrote: > Hello, > I would like to 3D plot two time dependent fields E and B. > I have two questions about the current state of my notebook: > > Why the options Axes and AxesLabel produce an error, while producing > the expected behaviour (adding the axes label!) > > How can I have a Manipulate object that would allow me to scan over time? > > Thanks for your help! > Mathieu > > > > > Clear["Global`*"] > << PhysicalConstants` > Needs["VectorFieldPlots`"] > c = 299792458;(*SpeedOfLight*) > \[Mu] = \[Pi]/2500000;(*VacuumPermeability*) > \[Epsilon] = 8.854187817`*^-12;(*VacuumPermittivity*) > \[Omega] = 1;(*Angular speed*) > p = 1;(*Unit dipole moment*) > k = \[Omega]/c;(*Norm of the wave vector*) > r = Norm[{x, y, z}];(*Norm of the position vector*) > t = 10;(*Time*) > a = 10; > > Slider[Dynamic[t],{0,100}] > > Ex = (y^2 + z^2) Cos[\[Omega] Dynamic[t] - k r] - x y Sin[\[Omega] > Dynamic[t] - k r]; > Ey = (x^2 + z^2) Sin[\[Omega] Dynamic[t] - k r] - x y Cos[\[Omega] > Dynamic[t] - k r]; > Ez = z (x Cos[\[Omega] Dynamic[t] - k r] + y Sin[\[Omega] Dynamic[t] - k > r]); > > Bx = -z Sin[\[Omega] Dynamic[t] - k r]; > By = z Cos[\[Omega] Dynamic[t] - k r]; > Bz = x Sin[\[Omega] Dynamic[t] - k r] - y Cos[\[Omega] Dynamic[t] - k r]; > > VectorFieldPlot3D[ > (\[Omega]^2 p / 4 \[Pi] \[Epsilon] c^2 r^3) { > Ex, Ey, Ez > } > , {x, -a, a}, {y, -a, a}, {z, -a, a} > , VectorHeads -> True > , Axes -> True > , AxesLabel -> {x, y, z} > ] > > VectorFieldPlot3D[ > (\[Mu] \[Omega]^2 p / 4 \[Pi] c r^2) { > Bx, By, Bz > } > , {x, -a, a}, {y, -a, a}, {z, -a, a} > , VectorHeads -> True > , Axes -> True > , AxesLabel -> {x, y, z} > ] >