Re: Re: ParametricPlot3D from 5.2 to 6.0
- To: mathgroup at smc.vnet.net
- Subject: [mg80527] Re: [mg80498] Re: ParametricPlot3D from 5.2 to 6.0
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Fri, 24 Aug 2007 02:02:32 -0400 (EDT)
- References: <fagtvh$91l$1@smc.vnet.net> <faj4au$8io$1@smc.vnet.net> <16249230.1187867994319.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
It matters little in THIS case, but Set is faster than SetDelayed, the functions are not needed, and I see no reason to switch x and y or change signs, so on principal I'd write it as rho = Max[1 - 3 Sin[2 p] Sin[5 t + Pi/2], 0]; x = rho Sin[p] Cos[t]; y = rho Sin[p] Sin[t]; z = rho Cos[p]; ParametricPlot3D[{x, y, z}, {t, 0, 2 \[Pi]}, {p, 0, \[Pi]}, PlotPoints -> {11, 5}, Mesh -> All, MaxRecursion -> 0, PlotRange -> All, NormalsFunction -> None] Anyway, I like the more accurate "flower petal" version: ParametricPlot3D[{x, y, z}, {t, 0, 2 \[Pi]}, {p, 0, \[Pi]}, PlotRange -> All, PerformanceGoal -> "Quality"] Bobby On Thu, 23 Aug 2007 05:22:34 -0500, Francois LE COAT <lecoat at atari.org> wrote: > Hi, > > Thanks. I finally found the following form, thanks to Brett Champion > > xmin := 0 > xmax := 2*Pi > ymin := 0 > ymax := Pi > ro[t_, p_] := Max[1 - 3*Sin[2*p]*Sin[5*t + Pi/2], 0] > xxx[t_, p_] := ro[t, p]*Sin[p]*Cos[t] > yyy[t_, p_] := ro[t, p]*Sin[p]*Sin[t] > zzz[t_, p_] := ro[t, p]*Cos[p] > ParametricPlot3D[{yyy[t, p], -xxx[t, p], zzz[t, p]}, {t, xmin, xmax}, > {p,ymin, ymax}, PlotPoints -> {11, 5}, Mesh -> All, MaxRecursion -> 0, > PlotRange -> All, NormalsFunction -> None] > > Regards, > > -- > Fran=E7ois LE COAT > Author of Eureka 2.12 (2D Graph Describer, 3D Modeller) > <http://eureka.atari.org/> > <http://fon.gs/eureka/> > > Jens-Peer Kuska wrote : >> try: >> >> xmin := 0 >> xmax := 2*Pi >> ymin := 0 >> ymax := Pi >> ro[t_, p_] := Max[1 - 3*Sin[2*p]*Sin[5*t + Pi/2], 0] >> xxx[t_, p_] := ro[t, p]*Sin[p]*Cos[t] >> yyy[t_, p_] := ro[t, p]*Sin[p]*Sin[t] >> zzz[t_, p_] := ro[t, p]*Cos[p] >> ParametricPlot3D[{yyy[t, p], -xxx[t, p], zzz[t, p]}, {t, xmin, >> xmax}, {p, ymin, ymax}, PlotPoints -> {11, 5}, MaxRecursion -> 0, >> PlotRange -> All, PerformanceGoal -> "Speed"] >> >> Francois LE COAT wrote : >>> With the following notebook <http://eureka.atari.org/vrml/etoile.nb>= >>> I had the following rendering <http://eureka.atari.org/vrml/etoilm.g= if= >> >>> using Mathematica v. <= 5.2. With Mathematica 6.0 the interpolatio= n >>> method order seems to have changed. I didn't managed to obtain a sim= il= > ar >>> rendering with the "star" 3D surface. >>> >>> Can someone help to find how to describe the "star" the same way aga= in= > ? > > -- = DrMajorBob at bigfoot.com