Re: Unevaluated limit
- To: mathgroup at smc.vnet.net
- Subject: [mg84513] Re: [mg84505] Unevaluated limit
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Mon, 31 Dec 2007 21:17:29 -0500 (EST)
- References: <8036743.1199091028231.JavaMail.root@m08>
- Reply-to: drmajorbob at bigfoot.com
Here are a couple of approximations via Series: cos[x_] = Normal@Series[Cos[x], {x, 0, 4}] 1 - x^2/2 + x^4/24 g[x_] = Normal@ Series[2*x^2*Exp[6 x]*(1 - Cos[Exp[-3 x]*Tan[2/x]]), {x, Infinity, 4}] \[ExponentialE]^( 6 x) (2 x^2 - 2 x^2 Cos[\[ExponentialE]^(-3 x) (8/(3 x^3) + 2/x)]) f[x_] = Expand[g[x] /. Cos -> cos] 4 - (1024 \[ExponentialE]^(-6 x))/(243 x^10) - ( 1024 \[ExponentialE]^(-6 x))/(81 x^8) - ( 128 \[ExponentialE]^(-6 x))/(9 x^6) + 64/(9 x^4) - ( 64 \[ExponentialE]^(-6 x))/(9 x^4) + 32/(3 x^2) - ( 4 \[ExponentialE]^(-6 x))/(3 x^2) The second Series (for g) applies Cos to (VERY) small arguments when x is large, so the first Series (for cos) is a good approximation there. The result is f, which clearly approaches 4 as x->Infinity. Bobby On Mon, 31 Dec 2007 01:57:59 -0600, Liverpool <x at y.z> wrote: > I have to evaluate this limit (I know the answer is 4) > Limit[2*x^2*Exp[6 x]*(1 - Cos[Exp[-3 x]*Tan[2/x]]), x -> Infinity] > > but the output is unevaluated: > > Limit[2 \[ExponentialE]^(6 x) x^2 (1 - Cos[\[ExponentialE]^(-3 x) > Tan[2/x]]), x -> \[Infinity]] > > Is there any way to evaluate it symbolically? > > Thanks, Liverpool > > > > -- DrMajorBob at bigfoot.com