Re: Nice Integrate setting
- To: mathgroup at smc.vnet.net
- Subject: [mg73187] Re: Nice Integrate setting
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 6 Feb 2007 04:11:15 -0500 (EST)
- Organization: Uni Leipzig
- References: <epv37b$8ej$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, and it become more surprising ! you can also Integrate[f[x,y,z],z,y,x] that's called multiple integration. Regards Jens dimitris wrote: > I noticed a nice undocumentated (possibly ???) setting of Integrate > which I am sure > it is known to the Mathematica gurus of this forum but I think it > deserves to be > mentioned: > > Instead of something like > > IIn[12]:= > Integrate[Log[x], x] > Integrate[%, x] > Integrate[%, x] > Simplify[%] > > Out[12]= > -x + x*Log[x] > > Out[13]= > -((3*x^2)/4) + (1/2)*x^2*Log[x] > > Out[14]= > -((11*x^3)/36) + (1/6)*x^3*Log[x] > > Out[15]= > (1/36)*x^3*(-11 + 6*Log[x]) > > one can simply execute the command > > In[16]:= > Integrate[Log[x], x, x, x] > > Out[16]= > (1/36)*x^3*(-11 + 6*Log[x]) > > Similarly, > > In[20]:= > Timing[Integrate[Cos[x^2], x, x, x, x, x, x]] > > Out[20]= > {0.6399999999999988*Second, (1/960)*(Sqrt[2*Pi]*x*(-15 + > 4*x^4)*FresnelC[Sqrt[2/Pi]*x] - > 2*(9*x^2*Cos[x^2] + 10*Sqrt[2*Pi]*x^3*FresnelS[Sqrt[2/Pi]*x] + > 2*(-2 + x^4)*Sin[x^2]))} > > and so on > > e.g. > > In[23]:= > (TableForm[#1, TableAlignments -> Center] & )[({#1, Integrate[1/ > Sqrt[x], Sequence @@ Table[x, {#1}]]} & ) /@ Range[10]] > > BTW, the D function can also take the same setting > > In[25]:= > D[BesselJ[0, x], {x, 5}] == D[BesselJ[0, x], x, x, x, x, x] > > Out[25]= > True > > Dimitris >