Re: Nice Integrate setting
- To: mathgroup at smc.vnet.net
- Subject: [mg73238] Re: Nice Integrate setting
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 8 Feb 2007 03:42:55 -0500 (EST)
- References: <epv37b$8ej$1@smc.vnet.net><eq9cgh$nar$1@smc.vnet.net>
Hello, Jens-Peer. Indeed, I was surprized. I didn't think the indefinite integration Integrate[f[x],x,x,x] as a "special case" of Integrate[f[x,y,z],x,y,z] So who needs the documentation? Not me, haha! Best Regards Dimitris =CF/=C7 Jens-Peer Kuska =DD=E3=F1=E1=F8=E5: > Hi, > > and it become more surprising ! you can also > Integrate[f[x,y,z],z,y,x] > > that's called multiple integration. > > Regards > Jens > > dimitris wrote: > > I noticed a nice undocumentated (possibly ???) setting of Integrate > > which I am sure > > it is known to the Mathematica gurus of this forum but I think it > > deserves to be > > mentioned: > > > > Instead of something like > > > > IIn[12]:= > > Integrate[Log[x], x] > > Integrate[%, x] > > Integrate[%, x] > > Simplify[%] > > > > Out[12]= > > -x + x*Log[x] > > > > Out[13]= > > -((3*x^2)/4) + (1/2)*x^2*Log[x] > > > > Out[14]= > > -((11*x^3)/36) + (1/6)*x^3*Log[x] > > > > Out[15]= > > (1/36)*x^3*(-11 + 6*Log[x]) > > > > one can simply execute the command > > > > In[16]:= > > Integrate[Log[x], x, x, x] > > > > Out[16]= > > (1/36)*x^3*(-11 + 6*Log[x]) > > > > Similarly, > > > > In[20]:= > > Timing[Integrate[Cos[x^2], x, x, x, x, x, x]] > > > > Out[20]= > > {0.6399999999999988*Second, (1/960)*(Sqrt[2*Pi]*x*(-15 + > > 4*x^4)*FresnelC[Sqrt[2/Pi]*x] - > > 2*(9*x^2*Cos[x^2] + 10*Sqrt[2*Pi]*x^3*FresnelS[Sqrt[2/Pi]*x] + > > 2*(-2 + x^4)*Sin[x^2]))} > > > > and so on > > > > e.g. > > > > In[23]:= > > (TableForm[#1, TableAlignments -> Center] & )[({#1, Integrate[1/ > > Sqrt[x], Sequence @@ Table[x, {#1}]]} & ) /@ Range[10]] > > > > BTW, the D function can also take the same setting > > > > In[25]:= > > D[BesselJ[0, x], {x, 5}] == D[BesselJ[0, x], x, x, x, x, x] > > > > Out[25]= > > True > > > > Dimitris > >