Re: Integrating SphericalHarmonicY
- To: mathgroup at smc.vnet.net
- Subject: [mg73240] Re: Integrating SphericalHarmonicY
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Thu, 8 Feb 2007 03:43:58 -0500 (EST)
- Organization: The University of Western Australia
- References: <eq9c4v$n37$1@smc.vnet.net>
In article <eq9c4v$n37$1 at smc.vnet.net>, wgempel at yahoo.com wrote: > I would like > > Integrate[ > Conjugate[SphericalHarmonicY[l,m,theta,phi]] > SphericalHarmonicY[l,m,theta,phi] Sin[theta], > {theta, 0, Pi}, {phi, 0, 2 Pi}] > > to evaluate to 1 (without having to force it through a rule every > time). You need to "help" Conjugate (for l and m integral) Conjugate[SphericalHarmonicY[l,m,theta,phi]] :> SphericalHarmonicY[l,m,theta,-phi] or Conjugate[SphericalHarmonicY[l,m,theta,phi]] :> (-1)^m SphericalHarmonicY[l,-m,theta,phi] Table[{l, m, (-1)^ m Integrate[ SphericalHarmonicY[l,-m,theta,phi] SphericalHarmonicY[l,m,theta,phi] Sin[theta], {theta, 0, Pi}, {phi, 0, 2 Pi}]}, {l,0,4},{m,-l,l}] More generally, you can compute integrals of triple-products of SphericalHarmonicY functions via ThreeJSymbol: Table[{l, m, Sqrt[2l + 1] (-1)^(l - m)* ThreeJSymbol[{l, m}, {l, -m}, {0, 0}]}, {l,0,4},{m,-l,l}] See also, http://physics.uwa.edu.au/pub/Computational/CP2/2.Schroedinger.nb Cheers, Paul _______________________________________________________________________ Paul Abbott Phone: 61 8 6488 2734 School of Physics, M013 Fax: +61 8 6488 1014 The University of Western Australia (CRICOS Provider No 00126G) AUSTRALIA http://physics.uwa.edu.au/~paul