MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Maclaurin series for ArcCosh[x] (update!)


Hi again.

Note the following

Series[ArcCosh[x], {x, 0, 11}, Assumptions -> x =E2=88=88 Reals]
SeriesData[x, 0, {(I/2)*Pi, -I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112,
0, (-35*I)/1152, 0, (-63*I)/2816}, 0, 12, 1]

ArcCosh[x] + O[x]^12
ArcCosh[x] + SeriesData[x, 0, {}, 12, 12, 1]

But applying first the TrigToExp function we get

TrigToExp[ArcCosh[x]] + O[x]^12
SeriesData[x, 0, {(I/2)*Pi, -I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112,
0, (-35*I)/1152, 0, (-63*I)/2816}, 0, 12, 1]

Regards
Dimitris



=CE=9F/=CE=97 Andrzej Kozlowski =CE=AD=CE=B3=CF=81=CE=B1=CF=88=CE=B5:
> Try:
>
> Series[ArcCosh[x], {x, 0, 11}]
>
> and now try
>
> ArcCosh[x] + O[x]^12
>
> At least with my version of Mathematica:
>
> $Version
> 5.2 for Mac OS X (February 24, 2006)
>
>
> I do not get the same answer (in fact in the latter case the input is
> returned unevaluated). With ArcSinh and any other function that I
> have tried in place of ArcCosh  the outputs are always the same.
>
> Andrzej Kozlowski



  • Prev by Date: Re: Maclaurin series for ArcCosh[x]
  • Next by Date: Re: Roman Numerals
  • Previous by thread: Re: Computing a covariance matrix
  • Next by thread: Re: ArcCosh[x] (1)