Re: Maclaurin series for ArcCosh[x]
- To: mathgroup at smc.vnet.net
- Subject: [mg73602] Re: Maclaurin series for ArcCosh[x]
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 23 Feb 2007 04:25:09 -0500 (EST)
- References: <erjoou$p9a$1@smc.vnet.net>
Ok I understand. So, what will comment on the following? Series[ArcCosh[x], {x, 0, 11}, Assumptions -> Element[x,Reals]] SeriesData[x, 0, {(I/2)*Pi, -I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112, 0, (-35*I)/1152, 0, (-63*I)/2816}, 0, 12, 1] TrigToExp[ArcCosh[x]] + O[x]^12 SeriesData[x, 0, {(I/2)*Pi, -I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112, 0, (-35*I)/1152, 0, (-63*I)/2816}, 0, 12, 1] Andrzej Kozlowski <akoz at mimuw.edu.pl> wrote: *This message was transferred with a trial version of CommuniGate(tm) Pro* On 22 Feb 2007, at 11:35, dimitris anagnostou wrote: > > In[47]:= > $Version > > Out[47]= > "5.2 for Microsoft Windows (June 20, 2005)" > > I think you have encountered something I would say is not a bug but > rather a feature. If it is a "feature" it is certainly a very well hidden one. However, I can see no justification for this in your post; and, to me it seesms clear that the two forms of input, by means of Series and + O [x]^n, have always been meat be equivalent, see for exmample seciton 3=2E6.2 of the Mathematica book, and particularly the sentence: Any time that an object like O[x] appears in a sum of terms, Mathematica will in fact convert the whole sum into a power series. "Features" should be made of sterner stuff. Andrzej Kozlowski > > Anyway, I believe that, the problematic behavior is due to the > presence of Floor function in the series expansion > not only of ArcCosh but also of ArcCot[x], ArcCoth[x], ArcCsc[x], > ArcCsch[x], ArcSec[x] nad ArcSech[x]. > > The following commands will demontrate that > > In[48]:= > ToExpression[Names["Arc*"]] > Through[%[x]] > ({#1, Series[#1, {x, 0, 11}]} & ) /@ % > ({#1, #1 + O[x]^12} & ) /@ %% > > Out[48]= > {ArcCos, ArcCosh, ArcCot, ArcCoth, ArcCsc, ArcCsch, ArcSec, ArcSech, > ArcSin, ArcSinh, ArcTan, ArcTanh} > > Out[49]= > {ArcCos[x], ArcCosh[x], ArcCot[x], ArcCoth[x], ArcCsc[x], ArcCsch[x], > ArcSec[x], ArcSech[x], ArcSin[x], ArcSinh[x], ArcTan[x], ArcTanh[x]} > > Out[50]= > {{ArcCos[x], SeriesData[x, 0, {Pi/2, -1, 0, -1/6, 0, -3/40, 0, -5/112, > 0, -35/1152, 0, -63/2816}, 0, 12, 1]}, > {ArcCosh[x], (-1)^Floor[Arg[x]/(2*Pi)]*SeriesData[x, 0, {(I/2)*Pi, - > I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112, 0, (-35*I)/1152, > 0, (-63*I)/2816}, 0, 12, 1]}, {ArcCot[x], (1/2)*(-1)^Floor[(Pi + > 2*Arg[x])/(2*Pi)]*Pi + > SeriesData[x, 0, {-1, 0, 1/3, 0, -1/5, 0, 1/7, 0, -1/9, 0, 1/11}, > 1, 12, 1]}, > {ArcCoth[x], (-I)*((1/2)*(-1)^Floor[Arg[x]/Pi]*Pi + SeriesData[x, 0, > {I, 0, I/3, 0, I/5, 0, I/7, 0, I/9, 0, I/11}, 1, 12, > 1])}, {ArcCsc[x], (1/2)*I*(-1)^Floor[Arg[x]/ > Pi]*(-2*I*Pi*Floor[Arg[x]/Pi] + > SeriesData[x, 0, {(-I)*Pi - Log[4] + 2*Log[x], 0, 1/2, 0, 3/16, > 0, 5/48, 0, 35/512, 0, 63/1280}, 0, 12, 1])}, > {ArcCsch[x], (-(1/2))*(-1)^Floor[(Pi + 2*Arg[x])/ > (2*Pi)]*(-2*I*Pi*Floor[(Pi + 2*Arg[x])/(2*Pi)] + > SeriesData[x, 0, {-Log[4] + 2*Log[x], 0, -1/2, 0, 3/16, 0, -5/48, > 0, 35/512, 0, -63/1280}, 0, 12, 1])}, > {ArcSec[x], Pi/2 - (1/2)*I*(-1)^Floor[Arg[x]/ > Pi]*(-2*I*Pi*Floor[Arg[x]/Pi] + > SeriesData[x, 0, {(-I)*Pi - Log[4] + 2*Log[x], 0, 1/2, 0, 3/16, > 0, 5/48, 0, 35/512, 0, 63/1280}, 0, 12, 1])}, > {ArcSech[x], (-(1/2))*I*(-1)^Floor[Arg[x]/Pi]*Pi + > (1/2)*(2*I*Pi*Floor[Arg[x]/Pi] + SeriesData[x, 0, {I*Pi + Log[4] - > 2*Log[x]}, 0, 12, 1]) + > SeriesData[x, 0, {-1/4, 0, -3/32, 0, -5/96, 0, -35/1024, 0, > -63/2560}, 2, 12, 1]}, > {ArcSin[x], SeriesData[x, 0, {1, 0, 1/6, 0, 3/40, 0, 5/112, 0, > 35/1152, 0, 63/2816}, 1, 12, 1]}, > {ArcSinh[x], SeriesData[x, 0, {1, 0, -1/6, 0, 3/40, 0, -5/112, 0, > 35/1152, 0, -63/2816}, 1, 12, 1]}, > {ArcTan[x], SeriesData[x, 0, {1, 0, -1/3, 0, 1/5, 0, -1/7, 0, 1/9, > 0, -1/11}, 1, 12, 1]}, > {ArcTanh[x], SeriesData[x, 0, {1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0, > 1/11}, 1, 12, 1]}} > > Out[51]= > {{ArcCos[x], SeriesData[x, 0, {Pi/2, -1, 0, -1/6, 0, -3/40, 0, -5/112, > 0, -35/1152, 0, -63/2816}, 0, 12, 1]}, > {ArcCosh[x], ArcCosh[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcCot[x], ArcCot[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcCoth[x], ArcCoth[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcCsc[x], ArcCsc[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcCsch[x], ArcCsch[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcSec[x], ArcSec[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcSech[x], ArcSech[x] + SeriesData[x, 0, {}, 12, 12, 1]}, > {ArcSin[x], SeriesData[x, 0, {1, 0, 1/6, 0, 3/40, 0, 5/112, 0, > 35/1152, 0, 63/2816}, 1, 12, 1]}, > {ArcSinh[x], SeriesData[x, 0, {1, 0, -1/6, 0, 3/40, 0, -5/112, 0, > 35/1152, 0, -63/2816}, 1, 12, 1]}, > {ArcTan[x], SeriesData[x, 0, {1, 0, -1/3, 0, 1/5, 0, -1/7, 0, 1/9, > 0, -1/11}, 1, 12, 1]}, > {ArcTanh[x], SeriesData[x, 0, {1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0, > 1/11}, 1, 12, 1]}} > > > Best Regards > Dimitris =CF/=C7 Andrzej Kozlowski =DD=E3=F1=E1=F8=E5: > Try: > > Series[ArcCosh[x], {x, 0, 11}] > > and now try > > ArcCosh[x] + O[x]^12 > > At least with my version of Mathematica: > > $Version > 5.2 for Mac OS X (February 24, 2006) > > > I do not get the same answer (in fact in the latter case the input is > returned unevaluated). With ArcSinh and any other function that I > have tried in place of ArcCosh the outputs are always the same. > > Andrzej Kozlowski