Re: Maclaurin series for ArcCosh[x]
- To: mathgroup at smc.vnet.net
- Subject: [mg73620] Re: Maclaurin series for ArcCosh[x]
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 23 Feb 2007 04:34:55 -0500 (EST)
- References: <erjoou$p9a$1@smc.vnet.net>
In[47]:= $Version Out[47]= "5.2 for Microsoft Windows (June 20, 2005)" I think you have encountered something I would say is not a bug but rather a feature. Anyway, I believe that, the problematic behavior is due to the presence of Floor function in the series expansion not only of ArcCosh but also of ArcCot[x], ArcCoth[x], ArcCsc[x], ArcCsch[x], ArcSec[x] nad ArcSech[x]. The following commands will demontrate that In[48]:= ToExpression[Names["Arc*"]] Through[%[x]] ({#1, Series[#1, {x, 0, 11}]} & ) /@ % ({#1, #1 + O[x]^12} & ) /@ %% Out[48]= {ArcCos, ArcCosh, ArcCot, ArcCoth, ArcCsc, ArcCsch, ArcSec, ArcSech, ArcSin, ArcSinh, ArcTan, ArcTanh} Out[49]= {ArcCos[x], ArcCosh[x], ArcCot[x], ArcCoth[x], ArcCsc[x], ArcCsch[x], ArcSec[x], ArcSech[x], ArcSin[x], ArcSinh[x], ArcTan[x], ArcTanh[x]} Out[50]= {{ArcCos[x], SeriesData[x, 0, {Pi/2, -1, 0, -1/6, 0, -3/40, 0, -5/112, 0, -35/1152, 0, -63/2816}, 0, 12, 1]}, {ArcCosh[x], (-1)^Floor[Arg[x]/(2*Pi)]*SeriesData[x, 0, {(I/2)*Pi, - I, 0, -I/6, 0, (-3*I)/40, 0, (-5*I)/112, 0, (-35*I)/1152, 0, (-63*I)/2816}, 0, 12, 1]}, {ArcCot[x], (1/2)*(-1)^Floor[(Pi + 2*Arg[x])/(2*Pi)]*Pi + SeriesData[x, 0, {-1, 0, 1/3, 0, -1/5, 0, 1/7, 0, -1/9, 0, 1/11}, 1, 12, 1]}, {ArcCoth[x], (-I)*((1/2)*(-1)^Floor[Arg[x]/Pi]*Pi + SeriesData[x, 0, {I, 0, I/3, 0, I/5, 0, I/7, 0, I/9, 0, I/11}, 1, 12, 1])}, {ArcCsc[x], (1/2)*I*(-1)^Floor[Arg[x]/ Pi]*(-2*I*Pi*Floor[Arg[x]/Pi] + SeriesData[x, 0, {(-I)*Pi - Log[4] + 2*Log[x], 0, 1/2, 0, 3/16, 0, 5/48, 0, 35/512, 0, 63/1280}, 0, 12, 1])}, {ArcCsch[x], (-(1/2))*(-1)^Floor[(Pi + 2*Arg[x])/ (2*Pi)]*(-2*I*Pi*Floor[(Pi + 2*Arg[x])/(2*Pi)] + SeriesData[x, 0, {-Log[4] + 2*Log[x], 0, -1/2, 0, 3/16, 0, -5/48, 0, 35/512, 0, -63/1280}, 0, 12, 1])}, {ArcSec[x], Pi/2 - (1/2)*I*(-1)^Floor[Arg[x]/ Pi]*(-2*I*Pi*Floor[Arg[x]/Pi] + SeriesData[x, 0, {(-I)*Pi - Log[4] + 2*Log[x], 0, 1/2, 0, 3/16, 0, 5/48, 0, 35/512, 0, 63/1280}, 0, 12, 1])}, {ArcSech[x], (-(1/2))*I*(-1)^Floor[Arg[x]/Pi]*Pi + (1/2)*(2*I*Pi*Floor[Arg[x]/Pi] + SeriesData[x, 0, {I*Pi + Log[4] - 2*Log[x]}, 0, 12, 1]) + SeriesData[x, 0, {-1/4, 0, -3/32, 0, -5/96, 0, -35/1024, 0, -63/2560}, 2, 12, 1]}, {ArcSin[x], SeriesData[x, 0, {1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816}, 1, 12, 1]}, {ArcSinh[x], SeriesData[x, 0, {1, 0, -1/6, 0, 3/40, 0, -5/112, 0, 35/1152, 0, -63/2816}, 1, 12, 1]}, {ArcTan[x], SeriesData[x, 0, {1, 0, -1/3, 0, 1/5, 0, -1/7, 0, 1/9, 0, -1/11}, 1, 12, 1]}, {ArcTanh[x], SeriesData[x, 0, {1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0, 1/11}, 1, 12, 1]}} Out[51]= {{ArcCos[x], SeriesData[x, 0, {Pi/2, -1, 0, -1/6, 0, -3/40, 0, -5/112, 0, -35/1152, 0, -63/2816}, 0, 12, 1]}, {ArcCosh[x], ArcCosh[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcCot[x], ArcCot[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcCoth[x], ArcCoth[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcCsc[x], ArcCsc[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcCsch[x], ArcCsch[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcSec[x], ArcSec[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcSech[x], ArcSech[x] + SeriesData[x, 0, {}, 12, 12, 1]}, {ArcSin[x], SeriesData[x, 0, {1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816}, 1, 12, 1]}, {ArcSinh[x], SeriesData[x, 0, {1, 0, -1/6, 0, 3/40, 0, -5/112, 0, 35/1152, 0, -63/2816}, 1, 12, 1]}, {ArcTan[x], SeriesData[x, 0, {1, 0, -1/3, 0, 1/5, 0, -1/7, 0, 1/9, 0, -1/11}, 1, 12, 1]}, {ArcTanh[x], SeriesData[x, 0, {1, 0, 1/3, 0, 1/5, 0, 1/7, 0, 1/9, 0, 1/11}, 1, 12, 1]}} Best Regards Dimitris > Try: > > Series[ArcCosh[x], {x, 0, 11}] > > and now try > > ArcCosh[x] + O[x]^12 > > At least with my version of Mathematica: > > $Version > 5.2 for Mac OS X (February 24, 2006) > > > I do not get the same answer (in fact in the latter case the input is > returned unevaluated). With ArcSinh and any other function that I > have tried in place of ArcCosh the outputs are always the same. > > Andrzej Kozlowski