Re: showing an expression equal to 0
- To: mathgroup at smc.vnet.net
- Subject: [mg73722] Re: showing an expression equal to 0
- From: "Sem" <sarner2006-sem at yahoo.it>
- Date: Mon, 26 Feb 2007 06:16:31 -0500 (EST)
- References: <errm70$8bp$1@smc.vnet.net>
Hi dimitris, you could try these steps for example: In[1]:= eq= ArcTan[y/Sqrt[R^2-y^2]]==ArcSin[y/R]; assum={R>0&&-R<y<R}; In[2]:= eq1= Thread[TrigToExp[eq],Equal]; Above there are some useful rules for log transformations: In[3]:= LogComb[expr_] := expr//.{a_ Log[b_]\[RuleDelayed] Log[b^a], Log[a_]+Log[b_]\[RuleDelayed] Log[Simplify[a b]]}; In[4]:= Simplify[eq1, assum]; In[5]:= % // LogComb Out[5]= True HTH, S. "dimitris" <dimmechan at yahoo.com> news:errm70$8bp$1 at smc.vnet.net... > Consider > > In[87]:= > expr = ArcTan[y/Sqrt[R^2 - y^2]] - ArcSin[y/R]; > > The expression for R>0 and -R<y<R is equal to zero > > In[72]:= > (Plot[Chop[Evaluate[expr /. R -> #1]], {y, -#1, #1}, Axes -> False, > Frame -> True] & ) /@ Range[5] > > Based on Andrzej's resposnse on a recenet message I am able to show > this equality for > given R. > > E.g. for R=4 the following demonstrates that expr is equal to zero > > In[99]:= > Simplify[expr /. R -> 4 /. y -> 2] > > Out[99]= > 0 > > In[97]:= > D[expr /. R -> 4, y] > Factor[%] > > Out[97]= > -(1/(4*Sqrt[1 - y^2/16])) + (y^2/(16 - y^2)^(3/2) + 1/Sqrt[16 - y^2])/ > (1 + y^2/(16 - y^2)) > Out[98]= > 0 > > However not specifying R (but assuming R>0&&-R<y<R) I am not able to > show that > expr is equal to zero. > > Any ideas? > > Thanks! > >