Re: showing an expression equal to 0
- To: mathgroup at smc.vnet.net
- Subject: [mg73741] Re: showing an expression equal to 0
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 27 Feb 2007 05:45:42 -0500 (EST)
- References: <errm70$8bp$1@smc.vnet.net><erug82$t6f$1@smc.vnet.net>
I really appreciate you response Sem! Dimitris =CF/=C7 Sem =DD=E3=F1=E1=F8=E5: > Hi dimitris, > you could try these steps for example: > > In[1]:= eq= ArcTan[y/Sqrt[R^2-y^2]]==ArcSin[y/R]; > assum={R>0&&-R<y<R}; > > In[2]:= eq1= Thread[TrigToExp[eq],Equal]; > > Above there are some useful rules for log transformations: > In[3]:= LogComb[expr_] := > expr//.{a_ Log[b_]\[RuleDelayed] Log[b^a], > Log[a_]+Log[b_]\[RuleDelayed] Log[Simplify[a b]]}; > > In[4]:= Simplify[eq1, assum]; > > In[5]:= % // LogComb > Out[5]= True > > HTH, > S. > > "dimitris" <dimmechan at yahoo.com> news:errm70$8bp$1 at smc.vnet.net... > > Consider > > > > In[87]:= > > expr = ArcTan[y/Sqrt[R^2 - y^2]] - ArcSin[y/R]; > > > > The expression for R>0 and -R<y<R is equal to zero > > > > In[72]:= > > (Plot[Chop[Evaluate[expr /. R -> #1]], {y, -#1, #1}, Axes -> False, > > Frame -> True] & ) /@ Range[5] > > > > Based on Andrzej's resposnse on a recenet message I am able to show > > this equality for > > given R. > > > > E.g. for R=4 the following demonstrates that expr is equal to zero > > > > In[99]:= > > Simplify[expr /. R -> 4 /. y -> 2] > > > > Out[99]= > > 0 > > > > In[97]:= > > D[expr /. R -> 4, y] > > Factor[%] > > > > Out[97]= > > -(1/(4*Sqrt[1 - y^2/16])) + (y^2/(16 - y^2)^(3/2) + 1/Sqrt[16 - y^2])/ > > (1 + y^2/(16 - y^2)) > > Out[98]= > > 0 > > > > However not specifying R (but assuming R>0&&-R<y<R) I am not able to > > show that > > expr is equal to zero. > > > > Any ideas? > > > > Thanks! > > > >