Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: MathKernel crashes

  • To: mathgroup at smc.vnet.net
  • Subject: [mg72860] Re: MathKernel crashes
  • From: "nandan" <joshi.nandan at gmail.com>
  • Date: Tue, 23 Jan 2007 04:31:06 -0500 (EST)
  • References: <eosgop$9ai$1@smc.vnet.net><eovesf$rlp$1@smc.vnet.net>

Hi:

On Jan 21, 11:22 am, Jean-Marc Gulliet <jeanmarc.gull... at gmail.com>
wrote:
> nandan wrote:
> > Hallo:
>
> > MathKernel crashes, since I use recursive function for calculation. I
> > have 2 of the important functions for my calculation as given below:
> > $RecursionLimit=Infinity;
>
> > pi[0, \[Theta]_] := 0;
> > pi[1, \[Theta]_] := 1;
> > pi[i_, \[Theta]_]\  := pi[i, \[Theta]]  = ((2  i - 1)/(i - 1))-------------------^
> Extra backslash must be removed
>
> > Cos[\[Theta]] pi[i - 1, \[Theta]] - (i/(i - 1)) pi[i - 2,\[Theta]]);--------------------------------------------------------------------^
> Extra parentheses must be removed
>
> > \[Tau][i_, \[Theta]_] := \[Tau][i, \[Theta]] = i Cos[\[Theta]] pi[i,
> > \[Theta]] - (i + 1)pi[i - 1, \[Theta]];

The syntax problem was due to wrong copying of the Mathematica code in
StandardForm. Is there any better way of copying it in InputForm?

> Here is a corrected version of the code:
>
> In[1]:=
> pi[0, θ_] = 0;
> pi[1, θ_] = 1;
> pi[i_, θ_] := pi[i, θ] =
>      ((2*i - 1)/(i - 1))*Cos[θ]*pi[i - 1, θ] -
>       (i/(i - 1))*pi[i - 2, θ];
> Ï?[i_, θ_] := Ï?[i, θ] = i*Cos[θ]*pi[i, θ] -
>       (i + 1)*pi[i - 1, θ];
>
> In[5]:=
> pi[14, Pi/3]
>
> Out[5]=
> 30439185
> --------
> 8388608
>
> > In this case, I can get solution to any numerical value like pi[14,
> > \[Pi]/3]. But quite a few times, it happened that MathKernel quitted,IIt would have been nice that you provided an example of such a call.
>
> > started again, but it started another processor parallel to that. LaterNot sure to understand what you mean: if the kernel really quits, you
> have no more kernel process loaded into memory.

The kernel simply quits, if the depth of recursion is big. The same
problem has be observed by Johan and reported here:
http://groups-beta.google.com/group/comp.soft-sys.math.mathematica/browse_frm/thread/922e6b5d1a472346

>
> > I wanted to calculate another function as follows:
> > S1Temp[i_, \[Theta]_] := ((2 l + 1)/(l (l + 1))) (an[l] pi[l, \[Theta]]---------^
> Inconsistent syntax: i is never used in the code: do you mean l? At any
> rate, this definition will cause an infinite recursion whenever it is
> called. Increasing $RecursionLimit will do nothing.

I'm sorry, 'i' was meant for 'l'. Too many equations with different
sums, makes it difficult to report.

>
> >  + bn[l]  \[Tau][l, \[Theta]]);
>
> > But in this case, whenever I try to calculate S1Temp[14, \[Pi]/3], it
> > simply quits and, sometimes crashes. I have to always restart
> > Mathematica to start over again.Here is a corrected version of the code:
>
> In[6]:=
> S1Temp[l_, θ_] := ((2*l + 1)/(l*(l + 1)))*
>      (an[l]*pi[l, θ] + bn[l]*Ï?[l, θ]);
>
> In[7]:=
> S1Temp[14, Pi/3]
>
> Out[7]=
> 29   30439185 an[14]   115937115 bn[14]
> --- (--------------- - ----------------)
> 210      8388608           8388608
>
> Now, the above result might or might not be what you expected since you
> did not provide any definition for an[i] and bn[i]. (Are they functions
> or arrays of values?)

The Solution for Pi/3 is faster, but in case of 'Pi/4' and higher 'l'
it simply quits. I provide u the correct version of the code and also
for a[i] and b[i], well, probably copying it as InputForm in
Mathematica can give better understanding...:

\[Psi][l_, \[Rho]_] := \[Rho]*Sqrt[Pi/(2*\[Rho])]*BesselJ[l + 1/2,
\[Rho]]
\[Psi]Prime[l_, \[Rho]_] := Evaluate[D[\[Psi][l, \[Rho]], \[Rho]]];
\[Zeta][l_, \[Rho]_] := \[Psi][l, \[Rho]] +
I*\[Rho]*Sqrt[Pi/(2*\[Rho])]*BesselY[l + 1/2, \[Rho]];
\[Zeta]Prime[l_, \[Rho]_] := Evaluate[D[\[Zeta][l, \[Rho]], \[Rho]]];


In[81]:=
an[l_] := Evaluate[(Subscript[m, 2]*\[Psi]Prime[l, Subscript[s,
1][r]]*\[Psi][l, Subscript[s, 2][r]] -
     Subscript[m, 1]*\[Psi][l, Subscript[s, 1][r]]*\[Psi]Prime[l,
Subscript[s, 2][r]])/
    (Subscript[m, 2]*\[Zeta]Prime[l, Subscript[s, 1][r]]*\[Psi][l,
Subscript[s, 2][r]] - Subscript[m, 1]*\[Zeta][l, Subscript[s, 1][r]]*
      \[Psi]Prime[l, Subscript[s, 2][r]])]
bn[l_] := Evaluate[(Subscript[m, 2]*\[Psi][l, Subscript[s,
1][r]]*\[Psi]Prime[l, Subscript[s, 2][r]] -
     Subscript[m, 1]*\[Psi]Prime[l, Subscript[s, 1][r]]*\[Psi][l,
Subscript[s, 2][r]])/
    (Subscript[m, 2]*\[Zeta][l, Subscript[s, 1][r]]*\[Psi]Prime[l,
Subscript[s, 2][r]] - Subscript[m, 1]*\[Zeta]Prime[l, Subscript[s,
1][r]]*
      \[Psi][l, Subscript[s, 2][r]])]
cn[l_] := Evaluate[(Subscript[m, 2]*\[Zeta][l, Subscript[s,
1][r]]*\[Psi]Prime[l, Subscript[s, 1][r]] -
     Subscript[m, 2]*\[Zeta]Prime[l, Subscript[s, 1][r]]*\[Psi][l,
Subscript[s, 1][r]])/
    (Subscript[m, 2]*\[Zeta][l, Subscript[s, 1][r]]*\[Psi]Prime[l,
Subscript[s, 2][r]] - Subscript[m, 1]*\[Zeta]Prime[l, Subscript[s,
1][r]]*
      \[Psi][l, Subscript[s, 2][r]])]
dn[l_] := Evaluate[(Subscript[m, 2]*\[Zeta]Prime[l, Subscript[s,
1][r]]*\[Psi][l, Subscript[s, 1][r]] -
     Subscript[m, 2]*\[Zeta][l, Subscript[s, 1][r]]*\[Psi]Prime[l,
Subscript[s, 1][r]])/
    (Subscript[m, 2]*\[Zeta]Prime[l, Subscript[s, 1][r]]*\[Psi][l,
Subscript[s, 2][r]] - Subscript[m, 1]*\[Zeta][l, Subscript[s, 1][r]]*
      \[Psi]Prime[l, Subscript[s, 2][r]])]

pi[0, \[Theta]_] := 0;
pi[1, \[Theta]_] := 1;
pi[i_, \[Theta]_] := pi[i, \[Theta]] = ((2*i - 1)/(i -
1))*Cos[\[Theta]]*pi[i - 1, \[Theta]] - (i/(i - 1))*pi[i - 2,
\[Theta]];
  \[Tau][i_, \[Theta]_] := \[Tau][i, \[Theta]] = i*Cos[\[Theta]]*pi[i,
\[Theta]] - (i + 1)*pi[i - 1, \[Theta]];


S1[\[Theta]_] := Sum[((2*l + 1)/(l*(l + 1)))*(an[l]*pi[l, \[Theta]] +
bn[l]*\[Tau][l, \[Theta]]), {l, 1, LastTerm[r]}];
S2[\[Theta]_] := Sum[((2*l + 1)/(l*(l + 1)))*(an[l]*\[Tau][l, \[Theta]]
+ bn[l]*pi[l, \[Theta]]), {l, 1, LastTerm[r]}];

> 
> Regards,
> Jean-Marc

Thanx again!

nandan


  • Prev by Date: Re: Running Galois.m on Version 2.2.2
  • Next by Date: Re: MathKernel crashes
  • Previous by thread: Re: MathKernel crashes
  • Next by thread: Re: MathKernel crashes