Re: How do quickest
- To: mathgroup at smc.vnet.net
- Subject: [mg72935] Re: How do quickest
- From: dh <dh at metrohm.ch>
- Date: Thu, 25 Jan 2007 07:55:38 -0500 (EST)
- References: <200701231003.FAA06815@smc.vnet.net> <ep7cho$bdl$1@smc.vnet.net>
Hi Arthur, Instead of searching for a solution inside the While loop, it is much faster ()but a bit more cumbersome to use Reduce. E.g.: a={3}; For[k=1+a[[Length[a]]],Length[a]<10, s2=Sum[(a[[t]])^2,{t,1,Length[a]}]; t=Reduce[{y^2+s2\[Equal]x^2,x>0,y>=k},{y,x},Integers][[1]]; t=t/.{Equal->Rule,And->List}; k=y/.t; AppendTo[a,k]]; a Artur wrote: > How do quickest following very slowly procedure: > a = {3}; For[k = 1 + a[[Length[ > a]]], Length[a] < 13, While[! IntegerQ[Sqrt[(k)^2 + Sum[(a[[t]])^2, > {t, 1, > Length[a]}]]], k++]; AppendTo[a, k]]; a > > ARTUR >
- Follow-Ups:
- Re: Re: How do quickest
- From: Artur <grafix@csl.pl>
- Re: Re: How do quickest
- References:
- Re: Running Galois.m on Version 2.2.2
- From: "Paul" <CarolP@rockford.com>
- Re: Running Galois.m on Version 2.2.2