Apart question
- To: mathgroup at smc.vnet.net
- Subject: [mg73030] Apart question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 30 Jan 2007 06:40:15 -0500 (EST)
Dear All, In[317]:= f[x_]:=(x^2+2*x+4)/(x^4-7*x^2+2*x+17) In[323]:= Apart[f[x]] Out[323]= (4 + 2*x + x^2)/(17 + 2*x - 7*x^2 + x^4) In[320]:= Times@@Apply[#1[[1]] - #1[[2]] & , Solve[Denominator[f[x]] == 0, x], 1] Apart[(4 + 2*x + x^2)/%] Map[FullSimplify, %, 1] Out[320]= (I/2 - (1/2)*Sqrt[15 - 4*I] + x)*(-(I/2) - (1/2)*Sqrt[15 + 4*I] + x)*((1/2)*(I + Sqrt[15 - 4*I]) + x)* ((1/2)*(-I + Sqrt[15 + 4*I]) + x) Out[321]= (4*I*((4 + 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/(Sqrt[15 - 4*I]*(-2*I + Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* (-2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 - 4*I] - 2*x)) - (4*I*((-4 - 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/ (Sqrt[15 - 4*I]*(2*I + Sqrt[15 - 4*I] - Sqrt[15 + 4*I])*(2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(I + Sqrt[15 - 4*I] + 2*x)) - (4*((15 + 4*I) + (2 + I)*Sqrt[15 + 4*I]))/(Sqrt[15 + 4*I]*(-2*I + Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* (2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I - Sqrt[15 + 4*I] + 2*x)) + (4*((-15 - 4*I) + (2 + I)*Sqrt[15 + 4*I]))/ (Sqrt[15 + 4*I]*(-2*I - Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 + 4*I] + 2*x)) Out[322]= 1/(1 + Sqrt[-15 + 4*I] - 2*I*x) + 1/(1 - Sqrt[-15 - 4*I] + 2*I*x) + 1/ (1 + Sqrt[-15 - 4*I] + 2*I*x) - 1/(-1 + Sqrt[-15 + 4*I] + 2*I*x) In[323]:= Options[Apart] Out[323]= {Modulus -> 0, Trig -> False} Why Apart cannot provide straightly the output Out[322]?
- Follow-Ups:
- Re: Apart question
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Apart question