fundamental Integrate question
- To: mathgroup at smc.vnet.net
- Subject: [mg73031] fundamental Integrate question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 30 Jan 2007 06:44:16 -0500 (EST)
Consider the classical example that incorrectly gave zero in a prior version of Mathematica (adopted from http://library.wolfram.com/infocenter/Conferences/5832/) In[345]:= Integrate[f[z], {z, 1 + I, -1 + I, -1 - I, 1 - I, 1 + I}] Chop[N[%]] Chop[NIntegrate[f[z], {z, 1 + I, -1 + I, -1 - I, 1 - I, 1 + I}]] Out[345]= 2*I*Pi Out[346]= 6.283185307179586*I Out[347]= 6.2831853071795685*I Of course the result is correct considering the pole at origin and the Residue theorem. Trying to understand how Mathematica applies the Newton-Leibniz formula I just want to know if I am right below: In[511]:= ((F[z] /. z -> 1 - I) - F[z] /. z -> -1 - I) + ((F[z] /. z -> 1 + I) - F[z] /. z -> 1 - I) + ((F[z] /. z -> -1 + I) - F[z] /. z -> 1 + I) + (Limit[F[z], z -> -1, Direction -> -I] - F[z] /. z -> -1 + I) + ((F[z] /. z -> -1 - I) - Limit[F[z], z -> -1, Direction -> I]) Out[511]= 2*I*Pi Thanks for any response! Dimitris
- Follow-Ups:
- Re: fundamental Integrate question
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: fundamental Integrate question
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: fundamental Integrate question