Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Bug in PowerMod function (mathematica 5.0)

  • To: mathgroup at smc.vnet.net
  • Subject: [mg73043] Bug in PowerMod function (mathematica 5.0)
  • From: Anton <antonvrba at yahoo.com>
  • Date: Tue, 30 Jan 2007 23:44:36 -0500 (EST)

PowerMod[2,17 p, p] = 2^17 if p is prime
Mathematica 5.0 calulates this as 2^4 for p=126322571 through to p=2147483647. Below the the output generated by Mathematica 5.0

Can other Mathematica 5.0 users please confirm if they can duplicate below result. I can duplicate on two different machines.

I also sent to Wolfram and I am interested in their response.

best regards
Anton

In[60]:=
p=Prime[123456780]
y=PowerMod[2,17  p,p]
FactorInteger[y]
"y is the correct result"

p=Prime[103456780]
y=PowerMod[2,17  p,p]
FactorInteger[y]
"y should equal 2^17 and not 2^2" 
m=5
y=PowerMod[2,(2^(32 m)-1)  p,p]
FactorInteger[y]
m=12
y=PowerMod[2,(2^(32 m)-1)  p,p]
FactorInteger[y]
"y equal 2^(m+1) is a cute result"

Out[60]=2543568329
Out[61]=131072
Out[62]={{2,17}}
Out[63]=y is the correct result
Out[64]=2112226087
Out[65]=4
Out[66]={{2,2}}
Out[67]=y should equal 2^17 and not 2^2
Out[68]=5
Out[69]=64
Out[70]={{2,6}}
Out[71]=12
Out[72]=8192
Out[73]={{2,13}}
Out[74]=y equal 2^(m+1) is a cute result

In[75]:=
"here is the range of the error"
p=Prime[7181138]
FactorInteger[PowerMod[2,17  p,p]]
p=Prime[7181138+1]
FactorInteger[PowerMod[2,17  p,p]]
p=Prime[105097565]
FactorInteger[PowerMod[2,17  p,p]]
p=Prime[105097565+1]
FactorInteger[PowerMod[2,17  p,p]]
Out[75]=here is the range of the error
Out[76]=126322543
Out[77]={{2,17}}
Out[78]=126322571
Out[79]={{2,2}}
Out[80]=2147483647
Out[81]={{2,2}}
Out[82]=2147483659
Out[83]={{2,17}}


  • Prev by Date: & without #
  • Next by Date: Re: Numerical quantifier elimination
  • Previous by thread: & without #
  • Next by thread: sort and positon matrix element help