Re: Integrating DircaDelta[x]
- To: mathgroup at smc.vnet.net
- Subject: [mg78536] Re: Integrating DircaDelta[x]
- From: dh <dh at metrohm.ch>
- Date: Tue, 3 Jul 2007 06:51:28 -0400 (EDT)
Hi Phillys, I think we simply have a bug here. Wolfram should take note. Consider: Integrate[DiracDelta[x],{x,-Infinity,a},Assumptions->{Element[a,Reals]}] gives 1, however if we add a<0 to the assumptions: Integrate[DiracDelta[x],{x,-Infinity,a},Assumptions->{Element[a,Reals],a<0}] we get 0. Daniel Pillsy wrote: > In Mathematica 6, integrating the DiracDelta function with specified > limits gives the expected result: > > In[1]:= Integrate[DiracDelta[x], {x, -Infinity, -1}] > > Out[1]:= 0 > > In[2]:= Integrate[DiracDelta[x], {x, -Infinity, 1}] > > Out[2]:= 1 > > In[3]:= Integrate[DiracDelta[x], {x, -Infinity, 0}] > > Out[3]:= 1/2 > > But when you replace the limit with a variable, it returns something > quite different: > > In[4]:= Integrate[DiracDelta[x], {x, -Infinity, a}] > > Out[4]:= If[a \[Element] Reals, 1, > Integrate[DiracDelta[x], {x, -\[Infinity], a}, > Assumptions -> Im[a] < 0 || Im[a] > 0]] > > In[5]:= Map[% /. a -> # &, {-1, 0, 1}] > > Out[5]:= {1, 1, 1} > > Any idea what's going on? I'm using the 32-bit x86 Mac version on OS X > 10.4.10, if it matters. > > TIA, > Pillsy > >