Re: Integrating DircaDelta[x]
- To: mathgroup at smc.vnet.net
- Subject: [mg78543] Re: Integrating DircaDelta[x]
- From: dh <dh at metrohm.ch>
- Date: Wed, 4 Jul 2007 05:27:33 -0400 (EDT)
- References: <f6d9oo$2hm$1@smc.vnet.net>
Hi, forgot to mention, that this is one of the new "features" of version 6. Daniel dh wrote: > Hi Phillys, > > I think we simply have a bug here. Wolfram should take note. Consider: > > Integrate[DiracDelta[x],{x,-Infinity,a},Assumptions->{Element[a,Reals]}] > > gives 1, however if we add a<0 to the assumptions: > > Integrate[DiracDelta[x],{x,-Infinity,a},Assumptions->{Element[a,Reals],a<0}] > > we get 0. > > Daniel > > > > Pillsy wrote: > >> In Mathematica 6, integrating the DiracDelta function with specified > >> limits gives the expected result: > > >> In[1]:= Integrate[DiracDelta[x], {x, -Infinity, -1}] > > >> Out[1]:= 0 > > >> In[2]:= Integrate[DiracDelta[x], {x, -Infinity, 1}] > > >> Out[2]:= 1 > > >> In[3]:= Integrate[DiracDelta[x], {x, -Infinity, 0}] > > >> Out[3]:= 1/2 > > >> But when you replace the limit with a variable, it returns something > >> quite different: > > >> In[4]:= Integrate[DiracDelta[x], {x, -Infinity, a}] > > >> Out[4]:= If[a \[Element] Reals, 1, > >> Integrate[DiracDelta[x], {x, -\[Infinity], a}, > >> Assumptions -> Im[a] < 0 || Im[a] > 0]] > > >> In[5]:= Map[% /. a -> # &, {-1, 0, 1}] > > >> Out[5]:= {1, 1, 1} > > >> Any idea what's going on? I'm using the 32-bit x86 Mac version on OS X > >> 10.4.10, if it matters. > > >> TIA, > >> Pillsy > > > > >