Re: something funny!
- To: mathgroup at smc.vnet.net
- Subject: [mg78756] Re: something funny!
- From: dimitris <dimmechan at yahoo.com>
- Date: Sun, 8 Jul 2007 06:18:50 -0400 (EDT)
- References: <f6nord$6jd$1@smc.vnet.net>
dimitris : > The version is 5.2. > > Say > > In[125]:= > o = 1/(2*e^z - e^z) > > Out[125]= > e^(-z) > > Then > > In[126]:= > o = (1/(2*e^z - e^z) /. e -> #1 & ) /@ Range[2, 10] > > Out[126]= > {2^(-z), 3^(-z), 4^(-z), 5^(-z), 6^(-z), 7^(-z), 8^(-z), 9^(-z), 10^(- > z)} > > However, > > In[128]:= > FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] > > Out[128]= > {1, 2^(-z), 3^(-z), 1/(2^(1 + 2*z) - 4^z), 5^(-z), 1/(2^(1 + z)*3^z - > 6^z), 7^(-z), 1/(2^(1 + 3*z) - 8^z), 9^(-z), > 1/(2^(1 + z)*5^z - 10^z)} > > No matter what I tried I could not simplify the expressions with even > base of z above. > Any ideas? > > My query becomes bigger considering that as I was informed even in > version > 6 we get > > FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] > > {1, 2^(-z), 3^(-z), 4^(-z), 5^(-z), 1/(2^(1 + z)*3^z - 6^z), > 7^(-z), 8^(-z), 9^(-z), 1/(2^(1 + z)*5^z - 10^z)} > > What it is so exotic I can't figure out. It is so trivial! > > In[140]:= > FullSimplify[1/(2^(1 + 2*z) - 4^z) == 1/(2*4^z - 4^z)] > > Out[140]= > True > > In another CAS I took > > convert("(1/(2*#1^z - #1^z) & ) /@ Range[10]",FromMma);value(%); > > 1 > map(unapply(----, _Z1), [seq(i, i = 1 .. 10)]) > z > _Z1 > > > 1 1 1 1 1 1 1 1 1 > [1, ----, ----, ----, ----, ----, ----, ----, ----, ---] > z z z z z z z z z > 2 3 4 5 6 7 8 9 10 > > > Dimitris To see why I consider it funny: In[944]:= InputForm[({#1, Integrate[1/(2*#1^z - #1^z), {z, 0, Infinity}]} & ) /@ Range[2, 10]] Out[944]//InputForm= {{2, Log[2]^(-1)}, {3, Log[3]^(-1)}, {4, Integrate[(2^(1 + 2*z) - 4^z)^(-1), {z, 0, Infinity}]}, {5, Log[5]^(-1)}, {6, Integrate[(2^(1 + z)*3^z - 6^z)^(-1), {z, 0, Infinity}]}, {7, Log[7]^(-1)}, {8, Integrate[(2^(1 + 3*z) - 8^z)^(-1), {z, 0, Infinity}]}, {9, Log[9]^(-1)}, {10, Integrate[(2^(1 + z)*5^z - 10^z)^(-1), {z, 0, Infinity}]}} where I wait an output as below In[948]:= Integrate[1/(2*e^z - e^z), {z, 0, Infinity}, Assumptions -> e > 1] (% /. e -> #1 & )[Range[2, 10]] Out[948]= 1/Log[e] Out[949]= {1/Log[2], 1/Log[3], 1/Log[4], 1/Log[5], 1/Log[6], 1/Log[7], 1/Log[8], 1/Log[9], 1/Log[10]} Dimitris