something funny!
- To: mathgroup at smc.vnet.net
- Subject: [mg78696] something funny!
- From: dimitris <dimmechan at yahoo.com>
- Date: Sat, 7 Jul 2007 06:00:37 -0400 (EDT)
The version is 5.2. Say In[125]:= o = 1/(2*e^z - e^z) Out[125]= e^(-z) Then In[126]:= o = (1/(2*e^z - e^z) /. e -> #1 & ) /@ Range[2, 10] Out[126]= {2^(-z), 3^(-z), 4^(-z), 5^(-z), 6^(-z), 7^(-z), 8^(-z), 9^(-z), 10^(- z)} However, In[128]:= FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] Out[128]= {1, 2^(-z), 3^(-z), 1/(2^(1 + 2*z) - 4^z), 5^(-z), 1/(2^(1 + z)*3^z - 6^z), 7^(-z), 1/(2^(1 + 3*z) - 8^z), 9^(-z), 1/(2^(1 + z)*5^z - 10^z)} No matter what I tried I could not simplify the expressions with even base of z above. Any ideas? My query becomes bigger considering that as I was informed even in version 6 we get FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] {1, 2^(-z), 3^(-z), 4^(-z), 5^(-z), 1/(2^(1 + z)*3^z - 6^z), 7^(-z), 8^(-z), 9^(-z), 1/(2^(1 + z)*5^z - 10^z)} What it is so exotic I can't figure out. It is so trivial! In[140]:= FullSimplify[1/(2^(1 + 2*z) - 4^z) == 1/(2*4^z - 4^z)] Out[140]= True In another CAS I took convert("(1/(2*#1^z - #1^z) & ) /@ Range[10]",FromMma);value(%); 1 map(unapply(----, _Z1), [seq(i, i = 1 .. 10)]) z _Z1 1 1 1 1 1 1 1 1 1 [1, ----, ----, ----, ----, ----, ----, ----, ----, ---] z z z z z z z z z 2 3 4 5 6 7 8 9 10 Dimitris