M^2 (definite integral)
- To: mathgroup at smc.vnet.net
- Subject: [mg78765] M^2 (definite integral)
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 9 Jul 2007 01:32:42 -0400 (EDT)
In[1600]:= Integrate[Sqrt[z]*(Sqrt[1 + z]/Sqrt[z^5 + 1]), {z, 0, Infinity}] Out[1600]= -(MeijerG[{{1/5, 2/5, 3/5, 4/5, 4/5, 1}, {}}, {{-(1/10), 1/10, 3/10, 3/10, 1/2, 7/10}, {}}, 1]/(160*Sqrt[5]*Pi^5)) After several hours Mathematica (5.2 and 6 as I was informed see below http://groups.google.gr/group/sci.math.symbolic/browse_thread/thread/24aa28ecd6734521/1657342a0b03492c?hl=el#1657342a0b03492c ) fails to give a numerical estimation with N[] of this MeijerG function. Oleksandr Pavlyk of WRI mentiones that this problem is fixed in the development version and he also offers a workaround (see above mentioned link). Let's see how we can avoid the MeijerG function until the new version of Mathematica comes on our hands... This is a numerical estimation of the integral In[1611]:= NIntegrate[Sqrt[z]*(Sqrt[1 + z]/Sqrt[z^5 + 1]), {z, 0, Infinity}, WorkingPrecision -> 50, PrecisionGoal -> 30, MaxRecursion -> 16] Out[1611]= 2.968824946844772905814687775851795916334391176498`30.22201746305465 First write the integrand as follows In[1656]:= ff=Factor //@ (Simplify[#1, z > 0] & )[Sqrt[z]*(Sqrt[1 + z]/Sqrt[z^5 + 1])] Out[1656]= Sqrt[z/(1 - z + z^2 - z^3 + z^4)] Then take the antiderivative of ff. In[1666]:= F = (FullSimplify[#1, z > 0] & )[Integrate[ff, z]] Out[1666]= (1/(Sqrt[5 + Sqrt[5]]*(-1 + z^2)))*(I*Sqrt[z]*(Sqrt[3 + Sqrt[5]]*(-1 + z)*Sqrt[2 + 1/z + z]* EllipticF[ArcSin[Sqrt[(1/2)*(-1 + Sqrt[5]) + 1/z + z]/5^(1/4)], - (2/(-1 + Sqrt[5]))] + Sqrt[((-5 + Sqrt[5])*(-1 + z)^2)/z]*(1 + z)*EllipticF[ArcSin[Sqrt[(1/2)*(-1 + Sqrt[5]) + 1/z + z]/5^(1/4)], (1/2)*(-5 + 3*Sqrt[5])])) There is a jump discontinuity exactly at z=1 In[1668]:= (Plot[#1[F], {z, 0, 10}] & ) /@ {Re, Im}; (*plots to be displayed*) Unfortunately applying the NL formula does not work since Mathematica seems not to be able to evaluate the limits at zero and infinity in reasonable time (for z->1 left and right there is not such a problem). The problem is due to the expression ArcSin[Sqrt[(1/2)*(-1 + Sqrt[5]) + 1/z + z]/5^(1/4)] and its behavior as z tends to zero and infinity In[1671]:= (Limit[ArcSin[Sqrt[(1/2)*(-1 + Sqrt[5]) + 1/z + z]/5^(1/4)], z -> #1] & ) /@ {0, Infinity} Out[1671]= {DirectedInfinity[-I], DirectedInfinity[-I]} But we can overcome this problem if we consult to the very definition of the EllipticF integral In[1672]:= Integrate[1/Sqrt[1 - m*Sin[ ]^2], { , 0, u}, GenerateConditions -> False] Out[1672]= EllipticF[u, m] For the application of the Newton Leibniz forula one needs the limits of F at z={0,1(+,-),Infinity}. We have In[1674]:= f1 = ToRadicals[RootReduce[-Limit[F, z -> 1, Direction -> -1] + Limit[F, z -> 1, Direction -> 1]]] Out[1674]= (-1 + Sqrt[5])*EllipticF[ArcSin[Sqrt[1/2 + 3/(2*Sqrt[5])]], (1/2)*(-5 + 3*Sqrt[5])] For the limits at zero and Infinity we will work as follows In[1677]:= f2 = FullSimplify[F /. EllipticF[u_, m_] -> Integrate[1/Sqrt[1 - m*Sin[ ]^2], { , 0, (-I)*Infinity}, GenerateConditions -> False]] Out[1677]= (1/(Sqrt[5 + Sqrt[5]]*(-1 + z^2)))*(I*Sqrt[z]*(Sqrt[2]*(-1 + Sqrt[5])*(2 + Sqrt[5])*(-1 + z)*Sqrt[2 + 1/z + z]* EllipticF[ArcCot[Sqrt[1 + Sqrt[5]]], 9 + 4*Sqrt[5]] - (4*Sqrt[10]*Sqrt[((-5 + 2*Sqrt[5])*(-1 + z)^2)/z]*(1 + z)* EllipticF[(-(1/4))*I*(Log[5] - 4*Log[1 + Sqrt[1 + Sqrt[5]]]), 5])/(-5 + 3*Sqrt[5]))) In[1685]:= f3 = FullSimplify[Limit[f2, z -> Infinity] - Limit[f2, z -> 0]] Out[1685]= 4*EllipticF[(-(1/4))*I*(Log[5] - 4*Log[1 + Sqrt[1 + Sqrt[5]]]), 5] And (at last!) the requeted definite integral (no MeijerG please!) In[1696]:= res = FullSimplify[f3 + f1] Out[1696]= (-1 + Sqrt[5])*EllipticF[ArcSin[Sqrt[(1/10)*(5 + 3*Sqrt[5])]], (1/2)*(-5 + 3*Sqrt[5])] + 4*EllipticF[(-(1/4))*I*(Log[5] - 4*Log[1 + Sqrt[1 + Sqrt[5]]]), 5] How about check it? In[1697]:= N[res, 30] Out[1697]= 2.968824946844772905814687775851795916332930758021`30.15051499783199 + 0``29.67793040712738*I Dimitris PS Brought to you by M^2 (Mind+Mathematica...the order is random!)