Re: Re: something funny!
- To: mathgroup at smc.vnet.net
- Subject: [mg78783] Re: [mg78756] Re: something funny!
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 9 Jul 2007 01:42:02 -0400 (EDT)
- Reply-to: hanlonr at cox.net
(Integrate[1/(2*#1^z - #1^z), {z, 0, Infinity}, Assumptions -> {n > 1}] &)[n] /. n -> Range[2, 10] {1/Log[2], 1/Log[3], 1/Log[4], 1/Log[5], 1/Log[6], 1/Log[7], 1/Log[8], 1/Log[9], 1/Log[10]} Bob Hanlon ---- dimitris <dimmechan at yahoo.com> wrote: > > dimitris : > > The version is 5.2. > > > > Say > > > > In[125]:= > > o = 1/(2*e^z - e^z) > > > > Out[125]= > > e^(-z) > > > > Then > > > > In[126]:= > > o = (1/(2*e^z - e^z) /. e -> #1 & ) /@ Range[2, 10] > > > > Out[126]= > > {2^(-z), 3^(-z), 4^(-z), 5^(-z), 6^(-z), 7^(-z), 8^(-z), 9^(-z), 10^(- > > z)} > > > > However, > > > > In[128]:= > > FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] > > > > Out[128]= > > {1, 2^(-z), 3^(-z), 1/(2^(1 + 2*z) - 4^z), 5^(-z), 1/(2^(1 + z)*3^z - > > 6^z), 7^(-z), 1/(2^(1 + 3*z) - 8^z), 9^(-z), > > 1/(2^(1 + z)*5^z - 10^z)} > > > > No matter what I tried I could not simplify the expressions with even > > base of z above. > > Any ideas? > > > > My query becomes bigger considering that as I was informed even in > > version > > 6 we get > > > > FullSimplify[(1/(2*#1^z - #1^z) & ) /@ Range[10]] > > > > {1, 2^(-z), 3^(-z), 4^(-z), 5^(-z), 1/(2^(1 + z)*3^z - 6^z), > > 7^(-z), 8^(-z), 9^(-z), 1/(2^(1 + z)*5^z - 10^z)} > > > > What it is so exotic I can't figure out. It is so trivial! > > > > In[140]:= > > FullSimplify[1/(2^(1 + 2*z) - 4^z) == 1/(2*4^z - 4^z)] > > > > Out[140]= > > True > > > > In another CAS I took > > > > convert("(1/(2*#1^z - #1^z) & ) /@ Range[10]",FromMma);value(%); > > > > 1 > > map(unapply(----, _Z1), [seq(i, i = 1 .. 10)]) > > z > > _Z1 > > > > > > 1 1 1 1 1 1 1 1 1 > > [1, ----, ----, ----, ----, ----, ----, ----, ----, ---] > > z z z z z z z z z > > 2 3 4 5 6 7 8 9 10 > > > > > > Dimitris > > To see why I consider it funny: > > In[944]:= > InputForm[({#1, Integrate[1/(2*#1^z - #1^z), {z, 0, Infinity}]} & ) /@ > Range[2, 10]] > > Out[944]//InputForm= > {{2, Log[2]^(-1)}, {3, Log[3]^(-1)}, {4, Integrate[(2^(1 + 2*z) - > 4^z)^(-1), {z, 0, Infinity}]}, {5, Log[5]^(-1)}, > {6, Integrate[(2^(1 + z)*3^z - 6^z)^(-1), {z, 0, Infinity}]}, {7, > Log[7]^(-1)}, > {8, Integrate[(2^(1 + 3*z) - 8^z)^(-1), {z, 0, Infinity}]}, {9, > Log[9]^(-1)}, > {10, Integrate[(2^(1 + z)*5^z - 10^z)^(-1), {z, 0, Infinity}]}} > > where I wait an output as below > > In[948]:= > Integrate[1/(2*e^z - e^z), {z, 0, Infinity}, Assumptions -> e > 1] > (% /. e -> #1 & )[Range[2, 10]] > > Out[948]= > 1/Log[e] > Out[949]= > {1/Log[2], 1/Log[3], 1/Log[4], 1/Log[5], 1/Log[6], 1/Log[7], 1/Log[8], > 1/Log[9], 1/Log[10]} > > Dimitris > >