Re: GammaDistribution versus PoissonDistribution
- To: mathgroup at smc.vnet.net
- Subject: [mg78994] Re: [mg78977] GammaDistribution versus PoissonDistribution
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 15 Jul 2007 01:06:33 -0400 (EDT)
- Reply-to: hanlonr at cox.net
$Version 6.0 for Mac OS X x86 (32-bit) (June 19, 2007) The Poisson distribution is discrete. pDist = PoissonDistribution[m]; PDF[pDist, x] m^x/(E^m*x!) #[pDist] & /@ {Mean, StandardDeviation} {m, Sqrt[m]} Sum[PDF[pDist, x], {x, 0, Infinity}] 1 With[{m = RandomInteger[{2, 10}]}, ListPlot[Table[ {x, PDF[PoissonDistribution[m], x]}, {x, 0, Ceiling[m + 3 Sqrt[m]]}], PlotStyle -> Red, Filling -> Axis, FillingStyle -> {{LightBlue, AbsoluteThickness[2]}}]] The Gamma distribution is continuous gDist = GammaDistribution[a, b]; PDF[gDist, x] x^(a - 1)/(b^a*E^(x/b)*Gamma[a]) #[gDist] & /@ {Mean, StandardDeviation} {a*b, Sqrt[a]*b} Integrate[PDF[gDist, x], {x, 0, Infinity}, Assumptions -> {a > 0, b > 0}] 1 Plot[Evaluate[Table[Tooltip[ PDF[GammaDistribution[a, 1], x], "a = " <> ToString[a]], {a, 1, 4}]], {x, 0, 8}, PlotRange -> All] Bob Hanlon ---- P_ter <peter_van_summeren at yahoo.co.uk> wrote: > Hello, > as far as I understand the GammaDistribution has two parameters: alfa and beta. With beta =1 one should get the PoissonDistribution with paramter alfa-1. > I did, just to check: > N[Table[{i, PDF[PoissonDistribution[12],i], > PDF[GammaDistribution[13,1],i] },{i,0,30}] > I got different values. > Can anyone help me in what I do wrong? > with friendly greetings, > Peter >