MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: GammaDistribution versus PoissonDistribution

  • To: mathgroup at smc.vnet.net
  • Subject: [mg78994] Re: [mg78977] GammaDistribution versus PoissonDistribution
  • From: Bob Hanlon <hanlonr at cox.net>
  • Date: Sun, 15 Jul 2007 01:06:33 -0400 (EDT)
  • Reply-to: hanlonr at cox.net

$Version

6.0 for Mac OS X x86 (32-bit) (June 19, 2007)

The Poisson distribution is discrete.

pDist = PoissonDistribution[m];

PDF[pDist, x]

m^x/(E^m*x!)

#[pDist] & /@ {Mean, StandardDeviation}

{m, Sqrt[m]}

Sum[PDF[pDist, x], {x, 0, Infinity}]

1

With[{m = RandomInteger[{2, 10}]},
 ListPlot[Table[
   {x, PDF[PoissonDistribution[m], x]},
   {x, 0, Ceiling[m + 3 Sqrt[m]]}],
  PlotStyle -> Red,
  Filling -> Axis,
  FillingStyle -> {{LightBlue, AbsoluteThickness[2]}}]]

The Gamma distribution is continuous

gDist = GammaDistribution[a, b];

PDF[gDist, x]

x^(a - 1)/(b^a*E^(x/b)*Gamma[a])

#[gDist] & /@ {Mean, StandardDeviation}

{a*b, Sqrt[a]*b}

Integrate[PDF[gDist, x], {x, 0, Infinity},
 Assumptions -> {a > 0, b > 0}]

1

Plot[Evaluate[Table[Tooltip[
    PDF[GammaDistribution[a, 1], x],
    "a = " <> ToString[a]], {a, 1, 4}]],
 {x, 0, 8},
 PlotRange -> All]


Bob Hanlon

---- P_ter <peter_van_summeren at yahoo.co.uk> wrote: 
> Hello,
> as far as I understand the GammaDistribution has two parameters: alfa and beta. With beta =1 one should get the PoissonDistribution with paramter alfa-1.
> I did, just to check:
> N[Table[{i, PDF[PoissonDistribution[12],i],
> PDF[GammaDistribution[13,1],i] },{i,0,30}]
> I got different values. 
> Can anyone help me in what I do wrong? 
> with friendly greetings,
> Peter
> 



  • Prev by Date: Re: annoying documentation in 6 (rant)
  • Next by Date: RE: ShowLegend - Re: Error message
  • Previous by thread: Re: GammaDistribution versus PoissonDistribution
  • Next by thread: Re: GammaDistribution versus PoissonDistribution