Re: generating non-IID random sequences
- To: mathgroup at smc.vnet.net
- Subject: [mg79169] Re: generating non-IID random sequences
- From: Mark Fisher <particlefilter at gmail.com>
- Date: Fri, 20 Jul 2007 03:24:41 -0400 (EDT)
- References: <f7kegd$58u$1@smc.vnet.net>
On Jul 18, 3:12 am, Yaroslav Bulatov <yarosla... at gmail.com> wrote: > I'm looking for a fast way to sample from a Markov-1 sequence of > random bits. The method below is 3600 times slower than built-in > RandomInteger function, can it be made much faster? > > p = 0.9; (* the probability of encountering 00 or 11 *) > f = RandomChoice[{p^# (1 - p)^(1 - #), p^(1 - #) (1 - p)^#} -> {1, 0}] > &; > NestList[f, RandomChoice[{0, 1}], 100000] Here are 3 functions. The first is your version; the second is your version compiled; the third is a slightly different version also compiled. fun = Function[{n, p}, NestList[ RandomChoice[{p^# (1 - p)^(1 - #), p^(1 - #) (1 - p)^#} -> {1, 0}] &, RandomChoice[{0, 1}], n]]; fun1 = Compile[{{n, _Integer}, {p, _Real}}, NestList[ RandomChoice[{p^# (1 - p)^(1 - #), p^(1 - #) (1 - p)^#} -> {1, 0}] &, RandomChoice[{0, 1}], n]]; fun2 = Compile[{{n, _Integer}, {p, _Real}}, NestList[ If[# == 0, If[RandomReal[] < p, 0, 1], If[RandomReal[] < 1 - p, 0, 1]] &, RandomChoice[{0, 1}], n]]; This gives the relative timings: First[#]/#& @ Table[Timing[i[10^5, .9]][[1]], {i, {fun, fun1, fun2}}] On my machine I get a factor of 5 speed up for fun1 and a factor of 25 speed up for fun2 relative to fun. --Mark.