Re: two integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg79204] Re: two integrals
- From: chuck009 <dmilioto at comcast.com>
- Date: Sat, 21 Jul 2007 04:21:33 -0400 (EDT)
How about just using the built-in CauchyPrinipalValue routine for the numerical check: In[68]:= << NumericalMath`CauchyPrincipalValue` In[68]:= CauchyPrincipalValue[int2 /. p -> 3/4, {z, 0, {3/4}, 1}, WorkingPrecision -> 50, PrecisionGoal -> 30] Out[68]= -3.350007071973017439190457717672333631156356729013`31.4358463\ 52995448 > On 18 , 09:56, dimitris <dimmec... at yahoo.com> > wrote: > N[res3 /. p -> 3/4] > > Out[31]= > -3.3500070719730175 + 0.*I > > In[34]:= > NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)) /. p -> > 3/4, {z, 0, 3/4 - > 10^(-7)}] + > NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)) /. p > p -> 3/4, {z, 3/4 + > 10^(-7), 1}] > > Out[34]= > -3.350006329606476 > >